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1 Gravitational Instability

1.1 The Transformation Excluding the Expansion of the Universe

Comoving coordinates, x, and peculiar velocities, vp, are defined

x =
1

a(t)
r, (1)

vp = v �H(t)r = a(t)
dx

dt
, (2)

where a(t) = (1 + z)�1 is the scale factor, assuming the normalization: a(present time) = 1;
H(t) = ȧ/a is the Habble parameter (H(present time) = H0 = 100h kms

�1
Mpc

�1).

Assuming the ⇤ = 0 universe and p = 0, the density ⇢(x, t), peculiar velocities vp(x, t), and the
perturbation of the gravitational potential �(x, t) are coupled by three nonrelativistic equations

@⇢

@t
+

1

a
r · (⇢vp) = �3H⇢, (3)

@vp

@t
+

1

a
(vp ·r)vp = �1

a
r��Hvp, (4)

1

a2
r2

� = 4⇡G(⇢� ⇢̄), (5)

where ⇢̄ = ⇢̄(t) is the mean density.
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Changing the variable from t to D ⌘ Dg(t) and rescaling the density, peculiar velocity and
perturbation of the gravitational potential

⌘ = a
3
⇢, (6)

v = (aḊ)�1vp = Ḋ
�1dx

dt
=

dx

dD
, (7)

' = (
3

2
⌦0ȧ

2
D)�1

�. (8)

one easily obtains
@⌘

@D
+

@(⌘vi)

@xi
= 0, (9)

@vi

@D
+ vk

@vi

@xk
= �3

2

⌦0

Df 2
(
@'

@xi
+ vi), (10)

@
2
'

@x
2
i

=
�

D
, (11)

where f(t) = d lnD/d ln a, � = (⌘� ⌘̄)/⌘̄ = (⇢� ⇢̄)/⇢̄ and summation over dummy indices is assumed.
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1.2 Zel’dovich Approximation

Assuming that the linear relation @'/@xi = �vi approximately holds in the nonlinear regime one
obtains the set of equations

@⌘

@D
+

@(⌘vi)

@xi
= 0, (12)

@vi

@D
+ vk

@vi

@xk
= 0, (13)

@
2
'

@x
2
i

=
�

D
. (14)

Equation 13 has an obvious solution

x(q, D) = q+Dv0(q), (15)

where v0(q) is the initial velocity field. The velocity field remains constant in the Lagrangian space

v(q, D) = v0(q), (16)

but obviously changes with time in the Eulerian space.

Zel’dovich derived the density from the conservation of mass

⌘(x, D) d3x = ⌘̄ d
3
q (17)

and expressed it in terms of the eigen values �1(q), �2(q), and �3(q) of the initial deformation tensor
dij(q) = �@v0i/@qj = @

2�0/@qi @qj

⌘(q, D) =
⌘̄

(1�D�1)(1�D�2)(1�D�3)
. (18)

In the limit | D�i |⌧ 1 eq.12 gives the density contrast known from the linear theory

�(q, D) ⇡ D
@v0j

@qj
= D (�1 + �2 + �3). (19)

3

(2) There are 4 kinds of fluid elements:

which experience 0, 1, 2, or 3 


collapses
(1) When and where D*lambda_i = 0  


den = infinity        (caustic)

(3)



I showed that the density can be also drived from the Poisson equation (14) (Doroshkevich,
Ryabenki & Shandarin 1973)

⌘̃(q, D) =
⌘̄

(1�D�1)(1�D�2)(1�D�3)
(1�D

2
I2 + 2D3

I3), (20)

where I2 = �1�2 + �1�3 + �2�3 and I3 = �1�2�3 are the invariants of the deformation tensor.

If the Zel’dovich solution was exact both would give the same result: ⌘ = ⌘̃.

Obviously ⌘ only approximatly equal to ⌘̃

⌘̃

⌘
= 1�D

2
I2 + 2D3

I3 (21)

but the ratio ⌘̃/⌘ remains finite even at ⌘ ! 1 and ⌘̃ ! 1.

In particular, ZA is exact before shell crossing in 1D (⌘̃/⌘ = 1 because I2 = I3 = 0).
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1.3 Eigen Values and Invariants

The joint probability distribution of an ordered set of eigenvalues �1 > �2 > �3, corresponding to a
Gaussian field

P (�1,�2,�3) =
675

p
5

8⇡ �
6
�

(�1 � �2)(�1 � �3)(�2 � �3) exp (
�6I21 + 15I2

2�2
�

), (22)

where I1 = �1 + �2 + �3 and I2 = �1�2 + �1�3 + �2�3 are the invariants of the deformation tensor;
the third invariant is I3 = �1�2�3. Some moments of the eigen values are

< �1 >= � < �3 >=
3p
10⇡

�� ⇡ 0.53 ��, < �2 >= 0, (23)

< �
2
1 >=< �

2
3 >=

13

30
�
2
� ⇡ 0.43 �

2
� , < �

2
2 >=

2

15
�
2
� ⇡ 0.13 �

2
� , (24)

< �1�2 >=< �2�3 >=
1

10
�
2
� , < �1�3 >= �1

5
�
2
� , (25)

< �1�2�3 >= 0. (26)

The mean values of the invariants are

< I1 >= 0, < I2 >= 0, < I3 >= 0. (27)
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                            Zel’dovich Approximation (1970)

 Generation of the initial conditions for cosmological N-body 


     simulations  (first time in Moscow in 1973, first time in US in 1983)  

  Key features of cosmic web predicted by ZA


 Anisotropic collapse and anisotropic expansion:

     pancakes/walls (1970), filaments (1982),  

     along with compact clumps and voids


 Full Set of Caustics (1982)


 Connectivity of the Large-Scale structure (1975)

 


 Topology of LSS (1983)


 Multi-stream flows (1970)


 Anisotropic accretion of mass on clumps from filaments (1989)

     https://www.astro.rug.nl/~hidding/go/go.html

L E

In ZA only

(not in N-body sim.

https://www.astro.rug.nl/~hidding/go/go.html


Virial theorem
<T>_t is total kinetic energy averaged over time


<V>_t is total potential energy averaged over time

Gravitational potential between two particle ~1/r


results in n=-1

The system must have N_p = const 



First Evidences of Web

in Theory and Observations





Gregory, Thompson June 1978





CAUSTICS

(1) Density is formally infinite

(In reality density is discontinuous)


(2) Caustics separate regions with 

different number of streams




15

Phase space

Density

Zeldovich Approximation  in 1D  

flip-flop  
points

1

1 3



Phase space

x(q)

q(x)

Density(x)

Number of flip-flops in L

Eeach peak corresponds 
    to a single subhalo

N-body in 1D 



L-space    ZA   E-space in 2D    
L    E    



Castics in 2D N-body simulations

Melott, Shandarin 1989
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A - caustics in 3DZA      Arnold 1982E-space

D - caustics in 3D



Caustics in 3D 



Caustic Structure 
 of Filaments and Halos 

2D

Melot, Shandarin 1989



N-body simulation:

Np=256^3,   L=100/h Mpc

Force res.=0.8/h Mpc

k_cutoff  = 4 (2pi / L)

R_sphere = 20 Mpc/h


Shandarin 2021
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Flip-flop :

Change of sign of


det(dx_i/dq_j)



Particles in 3D 
with number 

of flip-flops > 0 

k_Ny/k_c = 32 k_Ny/k_c = 16

k_Ny/k_c = 8 k_Ny/k_c = 4



Five distinct components 
(blue, magenta, green, yellow, and red) 
of the central caustic structure shown 
in bottom right of the previous slide

Caustics (in gray) inside of two red caustics

two orthogonal projections



Slice by a plane through two 

convex red caustic shells

Lagrangian space

Eulerian space

Slice by an orthogonal 

plane through the middle 

of the structure

        Two circular  caustics in slice

(do not exist in Zeldovich approximation)

log(longest side) Flip-flops

log(longest side) Flip-flops Flip-flops

log(longest side)



Slice by a plane through two 

convex red caustic shells

Slice by an orthogonal 

plane through the middle 

of the structure

Eulerian space



Slice by a plane through two 

convex red caustic shells

Slice by an orthogonal 

plane through the middle 

of the structure

Eulerian space

~ 10  Mpc/h

~ 5.5 Mpc/h



Lagrangian space

Caustics within a sphere of R ~ 25 Mpc/h 



Velocities 
(Colors show speed)





3 Mpc/h

4 <= particles with flip-flops <= 7



P(E) ~ -1; K(E)  = E - P = E  + 1


Vir:  K = -E;  K = -P/2 = 1/2 






Shape of the caustic boundary of the halo in E

5 slices parallel to 

X, Y and Z axes 


Black dots are particles

with n_ff > 4 


Slice thickness ~ 0.1Mpc/h


Red contours

 are 2D convex hulls




Shape of the caustic boundary of the halo in L

Slice thickness ~0.4 Mpc/h



Three mutually orthogonal slices thought Delaunay tessellations

of the both hallos  in the dumbbell  





Summary
(*) Caustics allow to study the shapes of the DM web in cosmological simulations

    without assumptions about their boundaries.


(*) Caustics are not fancy constructions. They are physical objects. 


(*) The shapes of caustic are direct products to the complex gravitational dynamics 

    in collisionless media.


(*) The dumbbell structure consisting of two halos connected by a filament is one 

    of the most common structures occurring in N-body simulations.


(*) It demonstrates two cylindrical caustic shells. The radius of the internal shell

    has the diameter similar to the sizes of the halos attached on both sides. 

 

(*) Both caustic  tubes supply mass to the halos.
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(*)The halos are neither spherical no ellipsoidal. 

However, there shapes look like convex hulles.


(*) The count of flip-flops provide additional indicator helping to sort out multistrim 

    Flows.


(*) There are streems that are not gravitationally bound to halos



