COSMICWEB23 @ KITP

Clustering of critical points in the Cosmic web

(MNRAS, 2021, 502, 3, 3885)

Junsup Shim (ASIAA)

Collaborators : Sandrine Codis (AIM), Christophe Pichon (IAP), Dmitri Pogosyan (U. Alberta), Corentin Cadiou (UCL)

2023. 01. 12

LSSs in our Universe

credit : Planck Collaboration, ESA

credit : M. Blanton, SDSS

Critical points (CPs)

- Points where the gradient of a (density) field vanishes, i.e. $\partial \rho / \partial x^{i} = 0$ (Milnor 63; Bardeen+86; Arnold 06)
- Categorized depending on the eigenvalues of the density Hessian $(\partial^2 \rho / \partial x^i \partial x^j)$

$(\lambda_1 < \lambda_2 < \lambda_3)$	λ_1	λ_2	λ_3	peak 👝
peak (maximum)	-	-	-	
filament (saddle)	-	-	+	M
wall (saddle)	-	+	+	voi
void (minimum)	+	+	+	

Significance of CPs

- Topological objects of density fields
- Formation sites of physical structures
 - Peak-point (maximum) : Massive cluster (Kaiser 84; Bardeen+86; Bond+91; Ludlow & Porciani 11)
 - Void-point (minimum) : Cosmic void (Bertschinger 85; Bardeen+86; Sheth & van de Weygaert 04; Colberg 05)
 - Filament-point (saddle) : Large-scale filament (Fard+19)
 - Wall-point (saddle) : Sheet-like structure (i.e. SGW)

Backbone of the Cosmic web

(Sousbie+08, 09; Pogosyan+09; van de Weygaert+11; Gay+12; Codis+18)

Clustering of CPs

0

Topology of density field Spatial organization of structures

Simulation data

- \odot L_{box} = 500 Mpc/h
- \odot N_{particle} = 256³
- 532 realizations (Gadget 2)
- \odot R_G = 6Mpc/h

 $\begin{array}{l} \Lambda CDM \ cosmology \\ \textcircledleft \ \Omega_b = 0.04, \ \Omega_m = 0.24 \ \Omega_\Lambda = 0.76 \\ \textcircledleft \ h = 0.7, \ n_s = 1, \ \sigma_8 = 0.8 \\ \end{array}$

CPs and LSSs

(in this setup)

• $R_G = 6 \text{ Mpc/h} (\sim 10^{15} M_{\odot}/h)$ At z=0, highest 5% peaks can be associated with collapsed halos (M~ 10^{15} M_{\odot}/h). Object of CPs are proxies of LSSs of the same kind (~ $10^{15}M_{\odot}/h$). At higher redshifts, CPs track the
 progenitors of these structures.

Relative number counts of CPs

2pCFs of CPs

1) Four auto-correlation functions

2) Six cross-correlation functions

Threshold v for CPs

more non-linear

Most overdense Peaks & Filaments

Most underdense Walls & Voids

type	rarity	$0 \le z < 0.5$ ($\sigma = 0.56$)	$\begin{array}{l} 0.5 \leq z < 1 \\ (\sigma = 0.44) \end{array}$	$\begin{array}{l} 1 \leq z < 2 \\ (\sigma = 0.33) \end{array}$	$\begin{array}{l} 2 \leq z < 3 \\ (\sigma = 0.23) \end{array}$	$\begin{array}{l} 3 \leq z < 4 \\ (\sigma = 0.18) \end{array}$	$\begin{array}{c} z \to \infty \\ (\sigma \to 0) \end{array}$
\mathcal{P}	20%	3.43	3.28	3.08	2.85	2.73	2.30
	15%	3.98	3.73	3.45	3.15	2.99	2.46
rarer	10%	4.74	4.36	3.95	3.55	3.33	2.67
	5%	6.09	5.42	4.77	4.18	3.87	2.98
\mathcal{F}	20%	1.13	1.19	1.23	1.25	1.25	1.21
	15%	1.39	1.44	1.46	1.46	1.45	1.37
	10%	1.76	1.79	1.78	1.74	1.71	1.57
	5%	2.40	2.36	2.29	2.19	2.12	1.87
\mathcal{W}	20%	-0.90	-0.97	-1.04	-1.10	-1.14	-1.21
	15%	-0.96	-1.05	-1.13	-1.21	-1.26	-1.37
	10%	-1.03	-1.14	-1.24	-1.35	-1.41	-1.57
	5%	-1.12	-1.26	-1.39	-1.53	-1.62	-1.87
V	20%	-1.24	-1.41	-1.60	-1.79	-1.91	-2.30
	15%	-1.27	-1.46	-1.66	-1.88	-2.01	-2.46
	10%	-1.31	-1.51	-1.74	-1.98	-2.13	-2.67
	5%	-1.37	-1.59	-1.85	-2.13	-2.30	-2.98

Rarity Dependence

Redshift Evolution

Auto-correlations of CPs

$1 + \xi_{ij}(r) = \frac{\langle C_i C_j \rangle}{\sqrt{\langle C_i R_j \rangle \langle C_j R_i \rangle}} \sqrt{\frac{N_{R_i} N_{R_j}}{N_{C_i} N_{C_j}}}$ (Davis & Peebles 83) **clustering**

2) Decreasing maximum correlation radius (Baldauf+16, Baldauf+20)

3) Narrower anticlustering region $(1+\xi<1)$

Cross-correlations of CPs

1) Anti-clustering $(1+\xi<1)$

2) Existence of exclusion zone $(1+\xi=0)$

3) Monotonic increase without maximum

Cross-correlations of CPs

1) Diverging feature at r->0

(critical event; Cadiou+20)

2) Appearance of local maximum

Gaussian predictions

Rarity Dependence

Redshift Evolution

Auto-correlations of CPs

Cross-correlations of CPs

Cross-correlations of CPs

1) Growing local maximum for PF

2) Decaying local maximum for WV

Summary I

On small scales

Maximum correlation Exclusion zone

Auto-correlations of CPs

Cross-correlations of CPs

Cross-correlations of CPs

Summary II

On large scales

BAO bump

BAO dip

Spatial organization of critical points?

Anisotropic contribution to cross-correlation

Direction of increasing density $(\lambda_3 > 0)$ (Bond+96; Codis, Pichon & Pogosyan+15; Kraljic+18; Musso+18;)

 $\lambda_2 < 0$

Anisotropic contribution to cross-correlation

 $(\lambda_1 < \lambda_2 < \lambda_3)$

 $\lambda_3 > 0$

 $\lambda_2 > 0$

Direction of decreasing density $(\lambda_1 < 0)$

27/30

0.28

Anisotropic clustering of CPs

Peaks around filaments

Voids around walls

Radii at maximum correlations

Cosmic crystal structure

 $r_{PF} / r_{PW} = 1/2^{0.5}$ $\simeq 0.71$

 $r_{PF} / r_{PV} = 1/3^{0.5}$ $\simeq 0.58$

Summary

CP clustering preserves the initial condition.

CP clustering has characteristic clustering scales.