Advanced utilization of High-Performance Computing funded by NRF of Korea

DARWIN: DAzzling Realization of dWarf galaxies In the Next generation of cosmological hydrodynamic simulations

Jihye Shin

& Ji-hoon Kim, Taysun Kimm, Myoungwon Jeon, Juhan Kim, Hyunmi Song, Jaehyun Lee, Yonghwi Kim

Horizon Run 5 (HR5)

- Hydrodynamical cosmological simulation
 devised to cover <u>a cubic volume of ~1cGpc³ with a spatial resolution up to 1kpc.</u>
- Simulation box of L~1cGpc is necessary
 to examine the BAO features and the enough number of clusters.
- Zoomed technique is used to compromise between volume and resolution.

Changbom Park

Juhan Kim

Horizon Run series (by KIAS)

First HD simulation of the HR series

	HR1	HR2	HR3	HR4	HR5
Box size (L)	9417 cMpc	10285 cMpc	15450 cMpc	4436 cMpc	1049 сМрс
# of particles	4120 ³	6000 ³	7200³	6300³	gas cells+particles
Reference	Kim et al. (2008)	Kim et al. (2011)	Kim et al. (2011)	Kim et al. (2015)	Lee & Shin et al. (2021)
Code	GOTPM (Dubinski, Kim, Park 2004)	GOTPM	GOTPM	GOTPM	RAMSES (Teyssier 2002)

HR5 builders

Professor Brad Gibson

Professor of Astrophysics/ Director, E.A Milne Centre for Astrophysics; Head of Physics Faculty of Science and Engineering

School of Mathematics and Physical Sciences

brad.gibson@hull.ac.uk

01482 465105

Kim, Juhan Research Professor Cosmology and Galaxy Formation

Hwang, Ho Seong QUC Research Professor Astrophysics Office:1431 / Tel:2515

L'HUILLIER, Benjamin

Kim, Yonghwi
Research Fellow
Theoretical Astronomy, Numerical
Astrophysics
Office: 7405
Tel: 2516 | Fax:

☑ E-mail
■ Publications

Former K-GMT Science Group Postdoctor (Sep 20 Hyunbae Park (박현배)

박인규

• 연구분야 : 입자실험 및 전산물리

• 연구실 : 과학기술관 2층 219호

• 전화번호: 02-6490-2652

· E-mail: icpark@uos.ac.kr

· Homepage : (대학원 연구실/과학기술관228호/02-6490-5770)

두 박찬

Park, Changbom Professor Astrophysics/Cosmology

Pichon, Christophe KIAS Scholar Astrophysics

Lee, Jae Hyun
Research Fellow
Modeling galaxy formation and
evolution
Office: 1514
Tel: 3740 | Fax:

E-mail
Publications

Snaith, Owain Nicholas
Research Fellow
Astrophysics
Office: 1425
Tel: 3864 | Fax: 3870

☑ E-mail

☐ Publications

Jihye Shin

KDES연구원 Office : 1317 ☑ E-mail

Tel: 2553 | Fax: 3870

Dr Gareth Fev

Research Fellow

Faculty of Science and Engineering

School of Mathematics and Physical Scien

c.few@hull.ac.uk

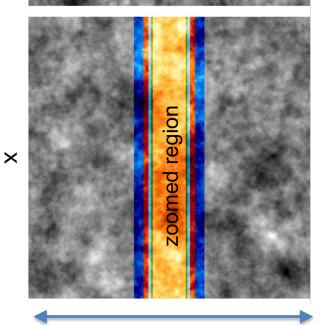
01482 463360

▲ 권오경 연구원

Smith, Rory

Kim, Jae-Woo (김재 Scientist

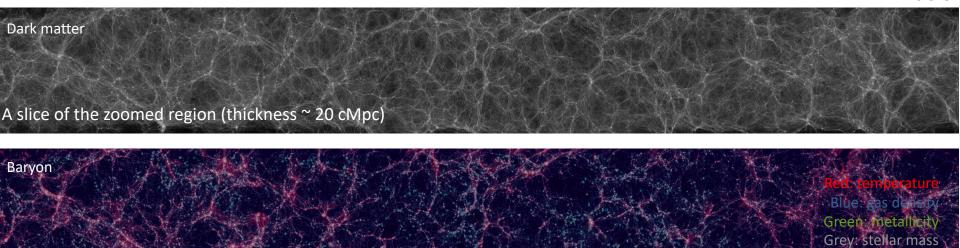
Y. Dubois


홍성욱 KDES연구원 Office: 1412 ☑ E-mail Tel: 3763

HR5 outline

- Adaptive Mesh Refinement code, <u>RAMSES</u>
 (Teyssier 2022, Dubois et al. 2014)
- Optimized for MPI+OMP hybrid computing
 Simulation box (1049cMpc)³
- Zoomed region 1049 x 119 x 127 cMpc³
 (~1/80 of the entire volume)
- Resolution down to <u>1kpc in the zoomed region</u>
- o Cosmology h:0.684, $\Omega_{\rm m}$ =0.3, Ω_{\wedge} =0.7 (compatible with the Planck data)
- 691 M core hours down to z~0.625
- Gas cooing down to T~750K
- Uniform reionization operates at z<10
- SNIa, SNII feedback: mechanically & radiatively
- Massive BH formation/evolution with spin:
 mechanically & radiatively

Initial condition of HR5 z=200

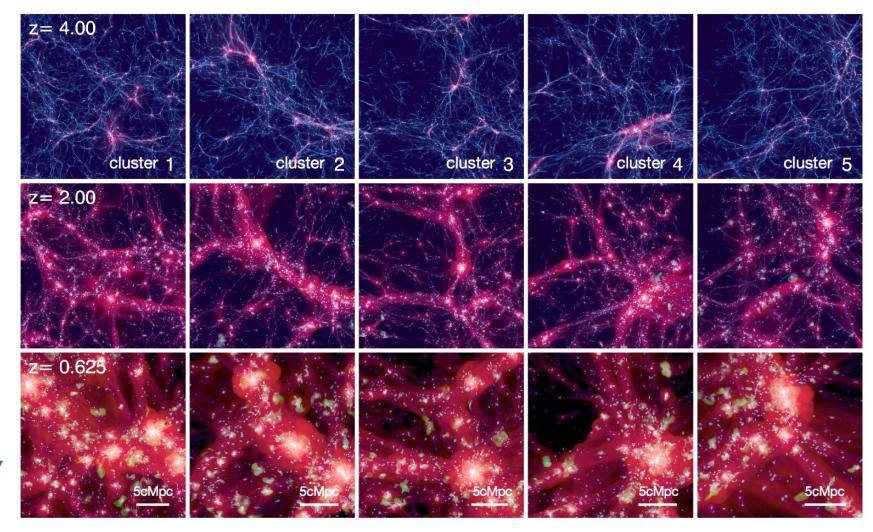

Ν

1049 cMpc

HR5 output

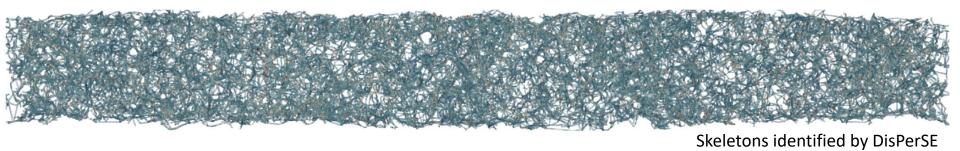
z~0.625

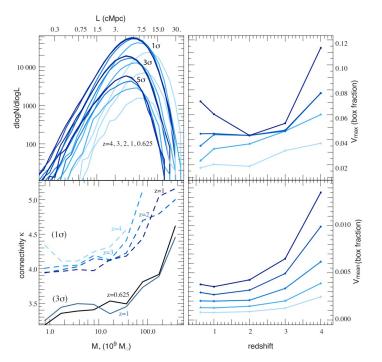
- A total of <u>146 snapshots</u>
- o Light cone space data from 2 observers
- 5 dense regions with finer time steps
 - : cluster candidate haloes
- Catalogues identified PGalF


FoF halos $(M_{\rm tot} > 10^{11} {\rm M}_{\odot})$	184,956
Cluster halos $(M_{\rm tot} > 10^{14} {\rm M}_{\odot})$	102
Galaxies $(M_* > 10^9 \mathrm{M}_\odot)$	290,086

z=0 625

Search for 'Horizon Run 5' on Youtube →


HR5 subprojects



- 26 subprojects on-going
- o published/accepted/submitted: more than 10 papers

Red: temperature Blue: gas density Green: metallicity Grey: stellar mass

HR5 subproject on the cosmic web

On-going sub-projects

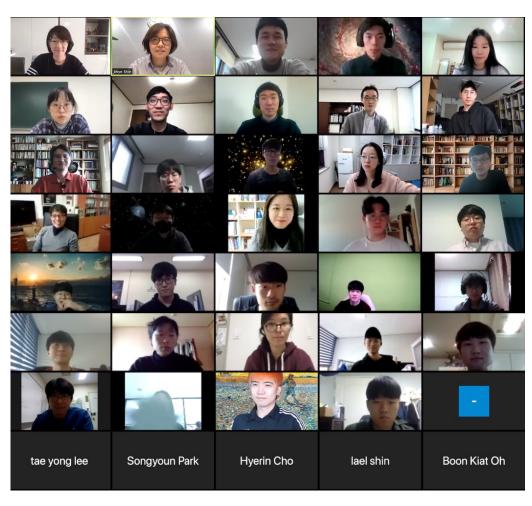
- Redshift evolution of connectivity and its impact on properties of centrals
 - -> leaded by Katarina Kraljic
- Influence of cosmic web environment on the galaxy cluster properties using HR5 simulation
 - -> leaded by Céline Gouin

Radius of the largest void ~ 100cMpc

Advanced utilization of HPC program

- o Solving scientific problems & creating innovative technologies
 - through support for large-scale group research
 - based on ultra-large data & simulation
 - using high-performance computing
- Major strategic fields: material science, life science, ICT, meterology self-driving, astronomy, nuclear fusion, manufacturing technology, natural disaster, national defense
- Budget: 3.5 million dollars during 4.5 years
 - → beginning in September of 2022
 - → project name: DARWIN

Numerical Galaxy Formation mini-workshop in Korea


1st - 2020.1.16

2nd - 2021.1.28

3rd - 2022. 1.25

DARWIN core members

PI: Jihye Shin

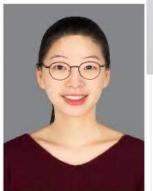
Co-PI: Jaehyun Lee

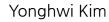
PM: Sungwook Hong

Oh-kyung Gwon

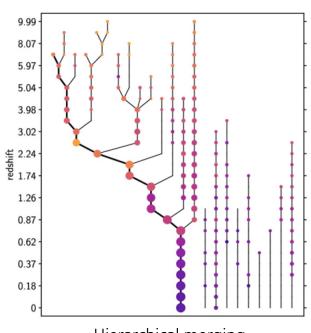
Juhan Kim

Taysun Kimm

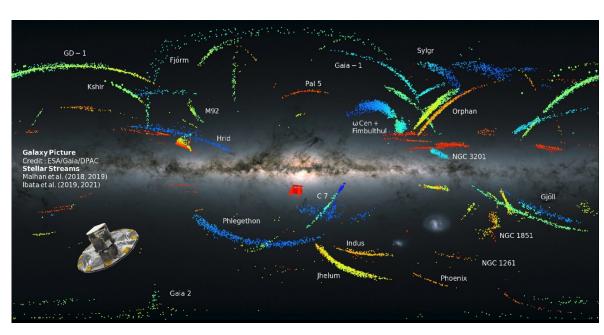

Myoungwon Jeon


Ji-hoon Kim

Hyunmi Song



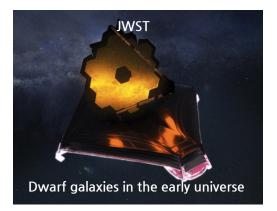
Ena Choi



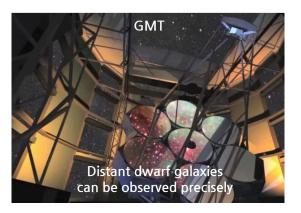
dwarf galaxy as target

Closely related to validity of the ACDM

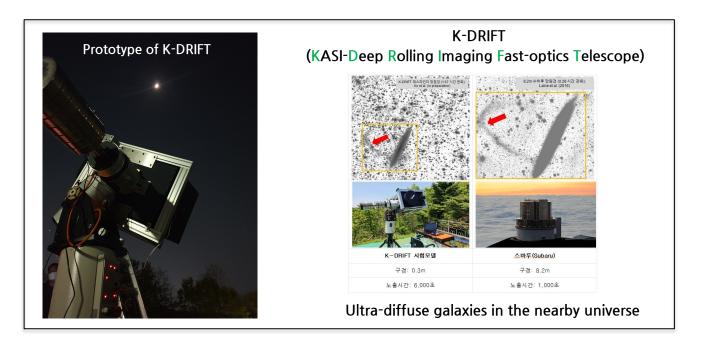
Hierarchical merging



Tidal features of dwarf satellites merged with the Galaxy


- \circ Various origins of the dwarf galaxy: the larger scatter on mass-size relation for the more massive (>10¹⁰M_{sun})
 - Easily affected by baryonic physics due to the small gravitational well
- o Observed properties of the dwarf galaxies: raise a crucial fundamental question about the validity of the ACDM

dwarf galaxy as target

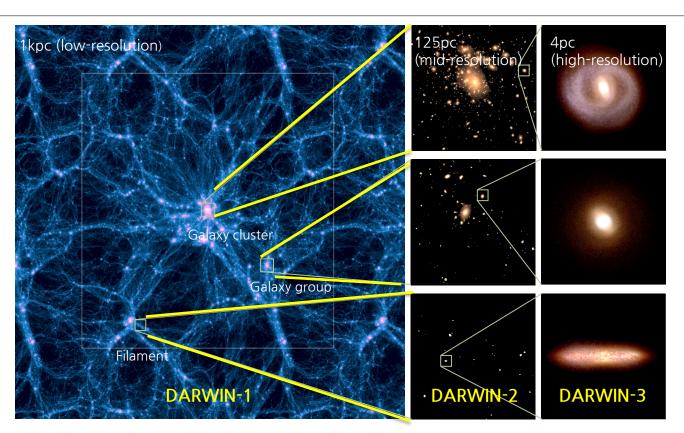

A key observation target for the next generation telescopes

→ A new chapter in the study of dwarf galaxies in opening.

dwarf galaxy simulation

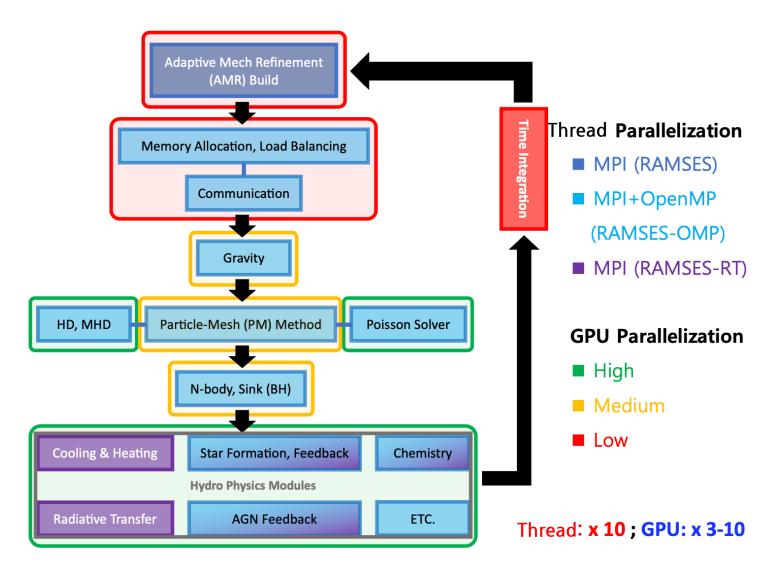
Requirement for clarifying of the dwarf galaxy origin

- Theoretical model to interpret next-generation observations
- High resolution + precise baryonic physics + cosmological volume
 - : challenging task in galaxy formation simulation
 - → the next-generation of the cosmological hydrodynamic simulation

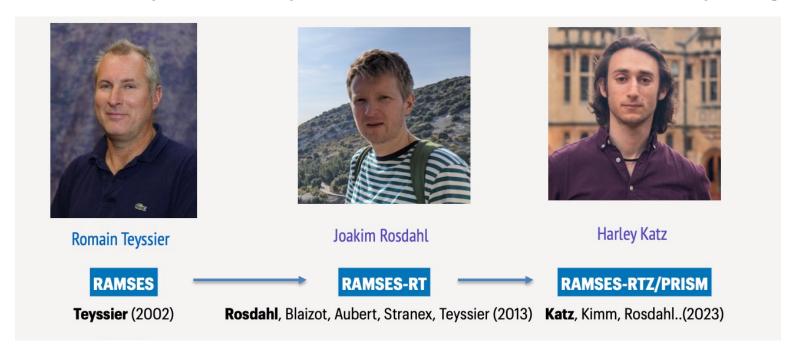

- Collaboration with Korean simulationists and HPC experts
- o Utilizing experiences of the largest-scale simulations
- o RAMSES-OMP optimized for the 5th Korean supercomputer
- o GPU parallelization for the next-generation, the 6th supercomputer
- Implementation of high-precision baryonic physics
- Strategically designed three-step resolution simulations
- Achieving precision & statistics by using Al

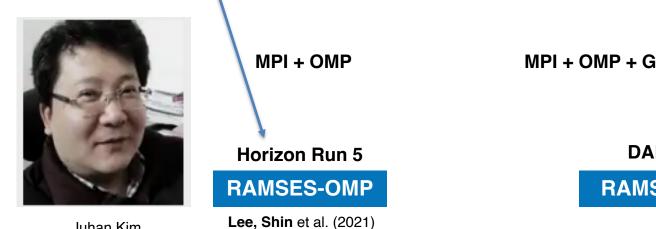
DARWIN's strategy

Clarifying the formation origin of the dwarf galaxies using the DARWIN


DARWIN: DAzzling Realization of dWarf galaxies In the Next generation of cosmological hydrodynamic simulations

- High-resolution & large-volume simultaneously = 3-step resolution simulations & AI
- The highest-resolution simulation by the up-to-date baryonic
- Efficient utilization of exa-scale computing: massively-parallel supercomputer & hybrid parallelization

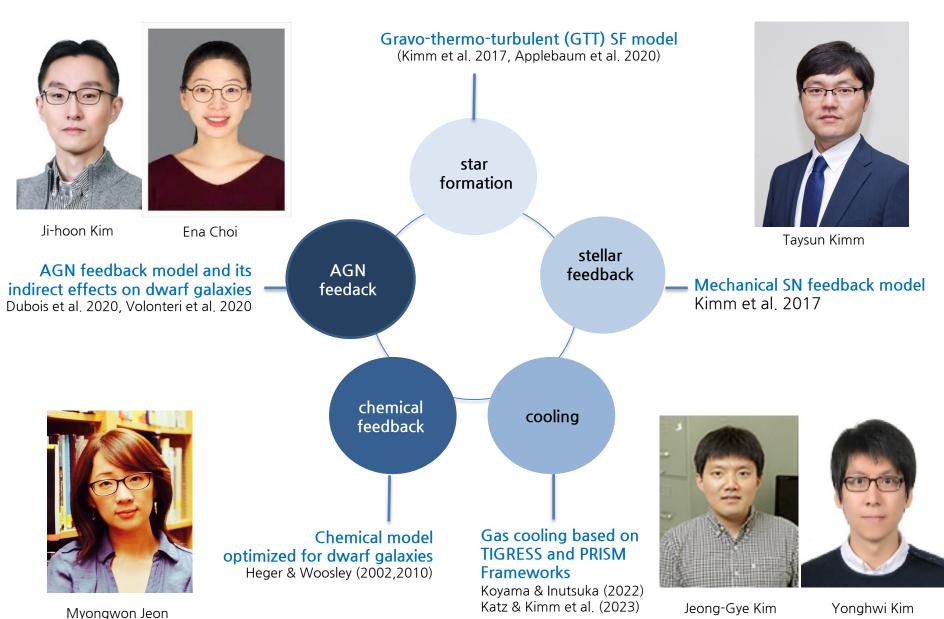



[1] development of optimized model for exa-scale computing

<u>Development of RAMSES-OC (OMPCUDA)</u>

[1] development of optimized model for exa-scale computing

Juhan Kim

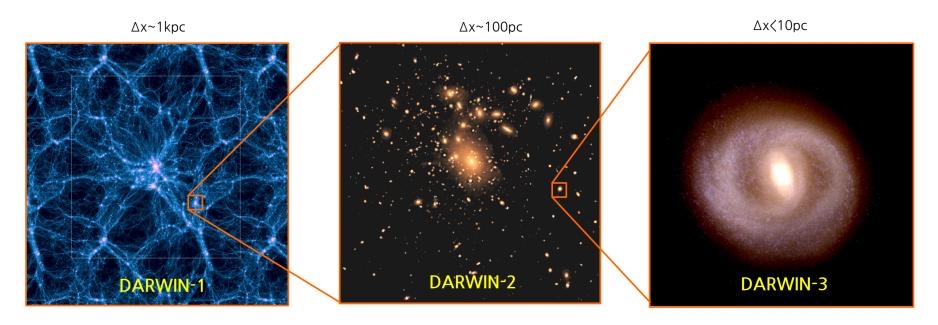

Yonghwi Kim

[2] development of high-precision baryonic physics modules

No tension Uncertain Weak tension Strong tension Missing satellites M_{\star} - $M_{\rm halo}$ relation Too big to fail Diversity of rotation curves Core-cusp Diversity of dwarf sizes Satellite planes

- → Baryonic physics model in a self-consistent manner down to a several parsec scale
 - = (Pop III + SN II + SN Ia + stellar winds, Gravo-thermmo-turbulent(GTT) SF model)
 - + Cooling model RAMSES-RTZ + PRISM + 4 pc resolution + large number of sample

[2] development of high-precision baryonic physics modules

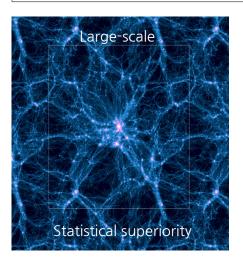


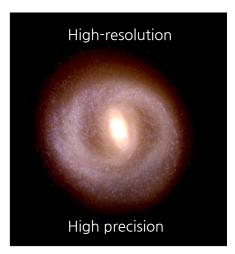
Katz & Kimm et al (2023) Jeong-Gye Kim

[3] a set of three different resolution runs, DARWIN

Three-stage run, DARWIN

	resolution	target region	features	
DARWIN-1	1kpc	(~130Mpc) ³	Describing various galaxies in various environmentsSearching for candidate regions of the DARWIN-2	
DARWIN-2	125pc	Selected environment from DARWIN-1	 Describing various galaxies in several selected environments Describing formation/evolution of dwarf galaxies Searching for candidate dwarf galaxies of the DARWIN-3 	
DARWIN-3	4pc	Selected dwarf galaxies from DARWIN-2	 Describing ISM and internal structures of dwarf galaxies Internal/external origin of various features of dwarf galaxies Securing of theoretical data approaching puzzles on dwarf galaxies 	




[4] data analysis using Al

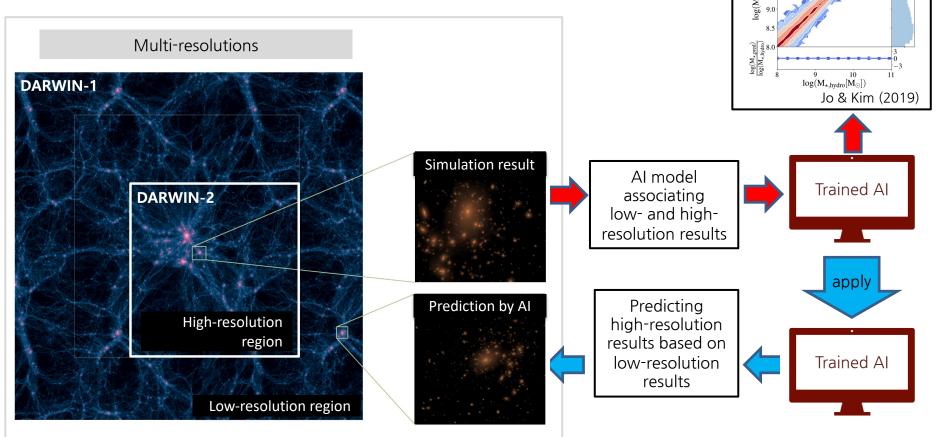
Three-stage run, DARWIN

	resolution	Target region	Strength	weakness
DARWIN-1	1kpc	~ (130Mpc) ³	Statistical analysis	Inability to describe dwarf galaxies
DARWIN-2	125pc	~ (30Mpc) ³	Coevolution of dwarf galaxies and the cosmic web	Reduced reliability of statistical analysis
DARWIN-3	4pc	~ (3Mpc) ³	Most realistically describe the dwarf galaxies	Inability to perform statistical analysis

- o Many remaining questions about the formation/evolution of the structure of the universe
 - : both "large-scale" and "high-resolution" is essential
- o Impossible in the next 10 years to achieve 'statistical superiority' and 'high precision' simultaneously

Ji-hoon Kim

→ artificial intelligence/machine learning

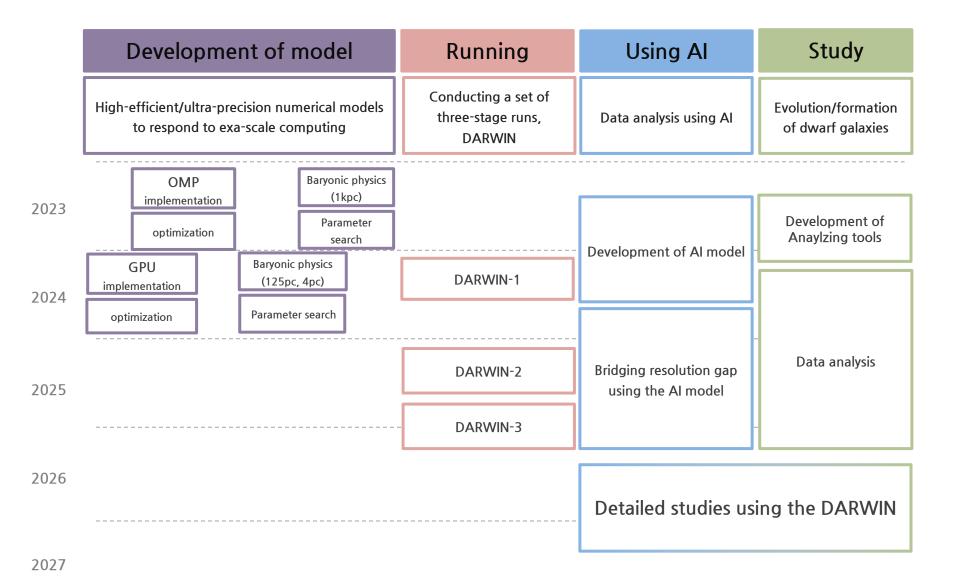

[4] data analysis using Al

Validation of prediction

Ideal prediction

Supplement of the low-resolution simulation

- Training from overlapped region between DARWIN-1 and DARWIN-2
- o Implementing Al's prediction in the low-resolution region outside the DARWIN-2
- Deriving de facto high-resolution results in DARWIN-1


[5] studies on formation/evolution of dwarf galaxies

Research topics related to dwarf galaxies using the DARWIN

- o Correlation between the diversity of dwarf galaxies and large-scale structures
- o Formation/evolution channels of mysterious dwarf galaxies: ultra-diffuse galaxies, ultra-compact dwarfs
- Tracing the earliest star remnants in our Milky Way dwarf galaxies
- o Relationship between primordial galaxies and supermassive black holes in the early universe
- o Effects of ram pressure and hydrodynamic effects on dwarf galaxies
- o Tracing the characteristics of stars and galaxies that first appear in the universe
- Internal evolution of gas instability and the impact of environmental factors
- Lyman-alpha properties of dwarf galaxies and emission/absorption lines to be compared with observations
- Al modelling to trace history of dwarf galaxies from observational characteristics of dwarf galaxies

- → <u>Various in-depth/detailed research topics from the DARWIN</u>
- → Maximizing synergy through collaboration with observation experts

Schedule for the DARWIN project

