The gravo-thermal relaxation of globular clusters

1

Kerwann TEP (IAP) January 24th, 2023

Globular cluster

- Dense, spherical stellar cluster: 10⁵ stars
- Size: a few pcs
- Very old: 10¹⁰ yrs
- Crossing time: 10⁵ yrs

M80

Globular clusters near us

 \rightarrow 150 GC in the Galaxy

Globular cluster

- Dense, spherical stellar cluster: 10⁵ stars
- Size: a few pcs
- Very old: 10¹⁰ yrs
- Crossing time: 10⁵ yrs
- Relaxation time: 10¹⁰ yrs
- \rightarrow Core collapse (20%)

Compare to the Galaxy:

- \rightarrow Number of stars: 10¹¹ stars
- \rightarrow Diameter: ~ 30 kpc
- \rightarrow Age of the MW: 10¹⁰ yrs
- \rightarrow Relaxation time: 10¹³ yrs

M80

Context

Objectives :

- Explain the rate of orbital diffusion
- \rightarrow Using analytical considerations
- \rightarrow Comparing to NBODY simulations

The system of interest (DF)

• Concentration of radial/circular orbits

The system of interest

- N-body system bound by gravity
- Plummer potential
- Velocity anisotropy
- \rightarrow No rotation

$$eta(r) = 1 - rac{\sigma_{
m t}^2}{2\sigma_{
m r}^2} = rac{q}{2}rac{r^2}{1+r^2} \, .$$

Chandrasekhar theory (NR)

- Infinite, locally homogeneous
- Fixed background of field stars
- Test stars follow straight lines
- 2-body deflections along orbit
- ightarrow weak, local, uncorrelated
- \rightarrow cumulative along test star's orbit

Binney & Tremaine (2008)

Chandrasekhar theory (NR)

 \boldsymbol{v}

m

φ

- Infinite, locally homogeneous
- Fixed background of field stars: impacted by anisotropy
- Test stars follow straight lines
- 2-body deflections along orbit
- \rightarrow weak, local, uncorrelated
- \rightarrow cumulative along test star's orbit

Average over orientations and encounters: impacted by anisotropy

- → Drift (Δv) and diffusion (Δv^2) of test stars' orbits → Fokker-Planck evolution equation → Free parameter: Coulomb log $\ln \Lambda$
- Binney & Tremaine (2008)

m_h

orbitplane

Computation of secular response

Fokker-Planck equation

$$\frac{\partial F(\boldsymbol{J})}{\partial t} = -\frac{\partial}{\partial \boldsymbol{J}} \cdot \boldsymbol{F}(\boldsymbol{J}) = -\frac{\partial}{\partial \boldsymbol{J}} \cdot \left[\boldsymbol{D}_1(\boldsymbol{J}) F(\boldsymbol{J}) - \frac{1}{2} \frac{\partial}{\partial \boldsymbol{J}} \cdot \left[\boldsymbol{D}_2(\boldsymbol{J}) F(\boldsymbol{J}) \right] \right]$$
$$\boldsymbol{D}_1(\boldsymbol{J}) = \begin{pmatrix} D_{J_r} \\ D_L \end{pmatrix}, \quad \boldsymbol{D}_2(\boldsymbol{J}) = \begin{pmatrix} D_{J_rJ_r} & D_{J_rL} \\ D_{J_rL} & D_{LL} \end{pmatrix}$$

Angular momentum

Qualitative agreement between NR theory and NBODY simulations

Up to overall prefactor (Darker colors for NR theory)

Deviations

- Far away interactions via 2 bodies
- Isotropic King sphere: prefactor ~1.4, by Theuns (1996)
- Isotropic isochrone: prefactor ~1.5, by Fouvry et al. (2021)

Impact of anisotropy on the rate of orbital change

Flux

- Reshuffling of orbits towards isotropisation:
- \rightarrow q=1 : orbits diffuse towards circular orbits
- ightarrow q=-6 : orbits diffuse towards radial orbits

Conclusions

Qualitative match between NBODY and NR theory

 \rightarrow Captures faster contraction via rate of orbital change

Perspectives

- Computation of other quantities: β(r), R_c(t), S(t), etc
- Self-consistent FP integration of anisotropic clusters
- Other spheres ? (truncated, cuspy, rotating)
- Anisotropic RR ? (next work: Coulomb log, prefactor, collective effects)

Isotropic isochrone cluster: Fouvry et al. (2021)

Rotating clusters

 $F(\mathbf{J}) = F_0(\widetilde{\mathbf{J}})(1 + \alpha \operatorname{Sign}(L_z))$

Rotating clusters

 $F(\mathbf{J}) = F_0(\widetilde{\mathbf{J}})(1 + \alpha \operatorname{Sign}(L_z))$

Computation of secular response

Fokker-Planck equation (no rotation)

$$\frac{\partial F(J)}{\partial t} = -\frac{\partial}{\partial J} \cdot F(J) = -\frac{\partial}{\partial J} \cdot \left[D_1(J)F(J) - \frac{1}{2} \frac{\partial}{\partial J} \cdot \left[D_2(J)F(J) \right] \right]$$
$$D_1(J) = \begin{pmatrix} D_{J_r} \\ D_L \end{pmatrix}, \quad D_2(J) = \begin{pmatrix} D_{J_rJ_r} & D_{J_rL} \\ D_{J_rL} & D_{LL} \end{pmatrix}$$

Fokker-Planck equation (rotation)

$$\frac{\partial F(J)}{\partial t} = -\frac{\partial}{\partial J} \cdot F(J) = -\frac{\partial}{\partial J} \cdot \left[D_1(J)F(J) - \frac{1}{2} \frac{\partial}{\partial J} \cdot \left[D_2(J)F(J) \right] \right]$$
$$D_1(J) = \begin{pmatrix} D_{J_r} \\ D_L \\ D_{L_z} \end{pmatrix} \quad D_2(J) = \begin{pmatrix} D_{J_rJ_r} & D_{J_rL} & D_{J_rL_z} \\ D_{LJ_r} & D_{LL} & D_{LL_z} \\ D_{L_zJ_r} & D_{L_zL} & D_{L_zL_z} \end{pmatrix}$$

2D => 3D !

