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Fig. 1 Sketch (not to scale) of the huge range of possible DM models that have been conceived. They span many orders of magnitude
in mass, with DM represented by very distinct phenomena, ranging from new elementary particles to black holes.

constrained at the percent and sub-percent level. This incredibly simple model is described by only 6 parameters
and parametrizes a large amount of the universe’s history. It describes a universe that is flat and seeded by nearly
scale invariant perturbations, composed of baryons, which amount to approximately 5% of the energy density of
the universe, a small radiation component, but in its majority is composed of two unknown ingredients. The energy
budget of the universe is dominated (⇠ 70%) by a component responsible for the current accelerated expansion
of the universe called dark energy, and a clustering component, the dark matter, making up to ⇠ 25% of our
universe. These large-scale observations give a coarse-grained description of these non-baryonic components in the
hydrodynamical limit where dark matter is described as a perfect fluid with very small pressure (w ⇡ 0) and sound
speed, cs ⇡ 0, that does not interact, at least strongly, with baryonic matter. Dark energy is parametrized by a
cosmological constant, the simplest model for the present accelerated expansion of our universe.

Therefore, within ⇤CDM, the Cold Dark Matter (CDM) paradigm emerged from the large scale observations
and describes the component responsible for the formation of the structures of our universe through gravitational
clustering. In the CDM model, DM is described by a perfect fluid that must be massive, su�ciently cold, which
means non-relativistic at the time of structure formation, and collisionless in order to explain the observational data
in large linear scales. This coarse-grained description of a CDM is very successful in fitting the linear, large scales
observations from the CMB, LSS, to clusters, and general properties of galaxies.

However, even though we know the hydrodynamical properties of DM on large scales to a very high precision,
the microphysics of the DM component remains unknown. This allows for the creation of a plethora of possible
models of DM. Those models must recover the large scale properties of CDM, but invoke very di↵erent objects
and phenomena to play the role of DM. This incredible variety of viable models of DM can be seen in the huge
range of masses those models cover, as shown in Figure 1. This figure shows many di↵erent classes of DM models
each of which might contain many di↵erent specific models. It spans more than 80 orders of magnitude and shows
very di↵erent hypothesis for DM, from new elementary particles, to composite objects, up to astrophysical size
primordial black holes. This shows us that although we have gathered a lot of knowledge about the gravitational
properties of DM, the nature of DM is still elusive, with the current data still allowing a huge amount of models.

The possibility that dark matter could be a long lived particle, particularly given by expected candidates from
fundamental particle physics, is very appealing. One class of models that became the preferred candidates for the DM
particles are WIMPs, weakly interacting massive particle, which represent new elementary particles that interact
with baryons not only gravitationally but also through the weak force or a new force of comparable strength [7,
8]. The strong motivation for this candidate is because if it is thermally produced in the early universe, the relic
abundance of particles that have mass of the electroweak scale, and a coupling of order one, corresponds precisely
to the abundance of DM in our universe. The possibility that WIMP could also be discovered by direct detection
experiments is also an important motivation to search for this candidate. There is a great experimental e↵ort to
constrain the properties of WIMP DM with the parameter space being very restricted over the past few years.
Given the complex phenomenology from the possible models of WIMP DM and their interaction with the standard
model particles, the translation of those bounds to the exclusion of WIMP models is not straightforward. The
cosmological and astrophysical behaviour of all the classes of WIMP models is similar to CDM, so the avenue to
probe this scenario is through direct, indirect and collider experiments.

We still have no conclusive evidence for electroweak or other non-gravitational interactions for dark matter. All
the knowledge we have about dark matter is gravitational. We know that CDM describes the behaviour of DM
very well on large scales. However, this beautiful and simple coarse grained description of DM as the CDM presents
some curiosities on small scales that might challenge the CDM paradigm.

As the observations and simulations of the small non-linear scales and galactic scales improve, a number of
challenges have emerged for this coarse grained description from ⇤CDM. These discrepancies have been around for
decades, such as the cusp-core problem, the missing satellite problem and the too big to fail problem. A particularly
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Figure 1: Comparison of cosmological large-scale structures formed by standard CDM and by wave-
like dark matter, ψDM. Panel (a) shows the structure created by evolving a single coherent wave function
for ΛψDM calculated on AMR grids. Panel (b) is the structure simulated with a standard ΛCDM N-body
code GADGET-212 for the same cosmological parameters, with the high-k modes of the linear power spec-
trum intentionally suppressed in a way similar to the ψDMmodel to highlight the comparison of large-scale
features. This comparison clearly demonstrates that the large scale distribution of filaments and voids is in-
distinguishable between these two completely different calculations, as desired given the success of ΛCDM
in describing the observed large scale structure. ψDM arises from the low momentum state of the conden-
sate so that it is equivalent to collisionless CDM well above the Jeans scale.

CDM, including the surprising uniformity of their
central masses,M(< 300 pc)! 107 M", and shallow
density profiles1–4. In contrast, galaxies predicted by
CDM extend to much lower masses, well below the
observed dwarf galaxies, with steeper, singular mass
profiles5–7. Adjustments to standard CDM address-
ing these difficulties consider particle collisions16, or
warm dark matter (WDM)17. WDM can be tuned to
suppress small scale structures, but does not provide
large enough flat cores18, 19. Collisional CDM can
be adjusted to generate flat cores, but cannot sup-
press low mass galaxies without resorting to other
baryonic physics20. Better agreement is expected
for ψDM because the uncertainty principle coun-
ters gravity below a Jeans scale, simultaneously sup-
pressing small scale structures and limiting the cen-
tral density of collapsed haloes8, 9.

Detailed examination of structure formation
with ψDM is therefore highly desirable, but, un-
like the extensive N-body investigation of standard

CDM, no sufficiently high resolution simulations of
ψDM have been attempted. The wave mechanics
of ψDM can be described by Schrödinger’s equa-
tion, coupled to gravity via Poisson’s equation13
with negligible microscopic self-interaction. The dy-
namics here differs from collisionless particle CDM
by a new form of stress tensor from quantum un-
certainty, giving rise to a comoving Jeans length,
λJ ∝ (1+ z)1/4m−1/2

B , during the matter-dominated
epoch15. The insensitivity of λJ to redshift, z, gener-
ates a sharp cutoff mass below which structures are
suppressed. Cosmological simulations in this con-
text turn out to be much more challenging than stan-
dard N-body simulations as the highest frequency
oscillations, ω , given approximately by the matter
wave dispersion relation, ω ∝ m−1

B λ−2, occur on the
smallest scales, requiring very fine temporal resolu-
tion even for moderate spatial resolution (see Sup-
plementary Fig. S1). In this work, we optimise
an adaptive-mesh-refinement (AMR) scheme, with
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astrophysical imprints: Hui, Ostriker, Tremaine & Witten ‘17, Hui ‘21
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Phase Space Dynamics

Vlasov-Poisson (collisionless Boltzmann, long range force)

@tf(x,p, t) = {H, f}

3+3 dim

@tf(x,p, t) = {H, f}

simple ‘cold’ initial conditions: flat sheet 

�V (x, t) /

⇢(x,t)
z }| {R
f(x,p, t) d3p�1

nonlinear

similar in plasma physics (gravity → Coulomb) 

Cold Dark Matter



Large-scale View of Phase Space
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Cold Dark Matter Approximations
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Key Idea

f(x,p, t) ' f~[ (x, t)](p)

correspondence: classical ⇄ quantum

Semiclassical Dynamics

�V (x, t) /

⇢(x,t)
z }| {
| (x, t)|2 �1i~ @t (x, t) = Ĥ (x, t)

Schrödinger-Poisson equation

3+3 dim 3 dim

numerics idea:

Widrow & Kaiser ‘93
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small scale

fundamental for (ultra-)light scalar fields


mean field might not be full story: Kopp et al. ’22, Eberhardt et al. ‘22 



multi-stream translates to 
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1D Wave Numerics

 phase jumps

density oscillations



f(x,p, t) ' f~[ (x, t)](p)

comoving position x [Mpc/h]
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classical ⇄ quantum

Semiclassical Dynamics

multi-stream 

→ bound structure

CU, Kopp & Haugg PRD ‘14

2D: Kopp++ PRD ‘17

�x�p & ~/2+ coarse-graining

1D Wave Numerics



1 Wave Function

numerical

N particles

analytical

2 fields

got it
?

Li, Hui & Bryan 18:

naive wave PT 

no good

One Wavefunction to rule them all?



Classical Dynamics

numerical

N particles

x(q, a) = q � ar'ini
g (q)
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v(q, a) = �r'ini
g (q)

<latexit sha1_base64="lfFmSrXc+fAadhCAUFpJY9WvoAQ="></latexit>

v(q, a) = �r'ini
g (q)
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Approximate: Shoot Particles

follow initial gravitational potential



Classical Dynamics

numerical

N particles

x(q, a) = q � ar'ini
g (q)
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v(q, a) = �r'ini
g (q)
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Zel’dovich 

?
2D & 3D:

+ tidal effects

Coordinates & PT

x: ’standard’ Eulerian (SPT)

q: Lagrangian (LPT)

Approximate: Shoot Particles

follow initial gravitational potential

1D: exact before shell-crossing



numerical

N particles

Free Propagation

S0(x, q, a) =
1

2
(x� q) · x� q

a
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classical action

background expansion

Classical Dynamics

CU, Rampf, Gosenca & Hahn 18



numerical

N particles

Translate Free Propagation

transition amplitude

 0(x, a) = N

Z
d3q exp


i

~S0(x, q, a)

�
 ini
0 (q)
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Semiclassical Dynamics

i~@a 0 = �~2
2
r2 0

<latexit sha1_base64="QgdkTIF5TmD4fKUYqwlyLdEaerY="></latexit>

Schrödinger equation
Coles & Spencer 03


CU, Rampf, Gosenca & Hahn 18

≊ Zeldovich approximation turned Eulerian



Eulerian

Classical Observables

⇢(x) = | (x)|2
<latexit sha1_base64="KXsIVct5+9QyJ7EKO6aZL9cWlTk=">AAACFXicbVDLSgMxFL3js9ZX1aWbYBEqSJmpgm7EohuXFewDOrVk0rQNzUyGJCOWaX/Cjb/ixoUibgV3/oWfYDrtQlsPhBzOuZd77/FCzpS27S9rbn5hcWk5tZJeXVvf2MxsbVeUiCShZSK4kDUPK8pZQMuaaU5roaTY9ziter3LkV+9o1IxEdzofkgbPu4ErM0I1kZqZg5d2RU51xO8pfq++dD9ATobuKFiU+rgttDMZO28nQDNEmdCsuffkKDUzHy6LUEinwaacKxU3bFD3Yix1IxwOky7kaIhJj3coXVDA+xT1YiTq4Zo3ygt1BbSvECjRP3dEWNfjbYzlT7WXTXtjcT/vHqk26eNmAVhpGlAxoPaEUdaoFFEqMUkJZr3DcFEMrMrIl0sMdEmyLQJwZk+eZZUCnnnKF+4Ps4WL8ZpQAp2YQ9y4MAJFOEKSlAGAg/wBC/waj1az9ab9T4unbMmPTvwB9bHD2NTn8A=</latexit>

v(x) =
i~
2

 r ̄ �  ̄r 

| |2
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density

+ velocity dispersion, …

velocity

 =
p
⇢ exp[i�v/~]
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= r�v

not necessarily potential



Amplitude: brightness

Phase: colour
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• Interference

• Regularised caustic
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Free Wave Evolution
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Unweaving the Wavefunction
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Dark matter Optics

Berry, Nye, Wright  `79

🤔

Optics Analogy

Multi-streaming Interference

Ray optics Wave optics

What is interfering?



 (x, a) ⇠
Z

dq K0(q;x, a) 
(ini)(q)

°º °º
2 0 º

2 º

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a

Stationary phase NumericalBased on propagator

tim
e| {z }

exp[ i
~ ⇣(q;x,a)]

•  contains action & initial conditions

•  transition amplitude

•  small  integrand oscillatory

ζ(q; x, a)
K(q; x, a)
ℏ →

Stationary Phase Approximation

 where  dominate integral q ζ′￼(q) = 0
Gough & Uhlemann 2022
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Stream Wavefunctions



°º °º
2 0 º

2 º

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

a

• Phase jumps 
at zero density

15

20

25

30

35

40

¡v/h̄

°1.0 °0.5 0.0 0.5 1.0
x

0

10

20

|√|2
•  captures beyond 

perfect fluid!
ψ

Get effect of stream averaging without explicit dissection of streams!
Gough & Uhlemann 2022

Non-Potential Velocity



• Velocity dispersion

Gough & Uhlemann 2022
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2D Phased Wave Example

position x
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 y

1 + �(x, a) = | |2
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Vorticity from phase jumps

v(x) =
i~
2

 r ̄ �  ̄r 

| |2
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13

free free, ks = kNy/8 free, ks = kNy/64 Zel0dovich, ks = kNy/64

FIG. 5. The wave function  (left panel, shown using domain coloring), as well as the vorticity ! = r⇥(j/[1+�]) (other panels)
for the phased wave problem; initial data is provided by Eq. (50). The second and third panels from the left show the vorticity
obtained using the free propagator, filtered with a Gaussian filter in Fourier space on scales of 1/8 and 1/64 the Nyquist wave
number to highlight both the large-scale transversal modes and the topological defects from which they arise. The rightmost
panel shows the corresponding vorticity using the Zel’dovich approximation with a smoothing to facilitate comparison to the
large-scale free propagator case shown next to it. Time and initial conditions are identical to Fig. 4, but in order to highlight
the role of ~, it has been increased to ~ = 0.05. The color scale for vorticity has been adjusted to highlight best the various
features in each panel.

propagator directly on a 10242 grid with ~ = 5 ⇥ 10�3.
Overall the results show excellent agreement between the
ZA and the free propagator, as well as between 2LPT and
NLO in terms of global shape of the caustics in the vari-
ous multi-stream regions. Naturally, after shell-crossing,
the propagator solutions show rapid oscillations that en-
code the multi-stream behaviour. This is related to the
appearance of higher-dimensional caustics that translate
into more complex di↵raction patterns than in the one-
dimensional case (cf. [33]). When interpreted in a coarse-
grained sense, the rapid oscillations disappear from the
physical density and velocity, but encode the properties
beyond the perfect pressureless fluid, in particular the
vorticity that is induced by shell-crossing.

C. 2D collapse – the vorticity

As a final aspect of this paper, we investigate how vor-
ticity arises in the classical and semiclassical picture, re-
spectively. For our propagator method, we determine the
vorticity w ⌘ r⇥v in Fourier space by first obtaining an
expression for the velocity v = j/(1+ �), where the RHS
is evaluated by using Eqs. (24)–(25). We thus calculate

! = F
�1

⇢
�ik ⇥ F

⇢
j

1 + �

��
, (51)

where F{·} is a fast Fourier transform (FFT). Since the
vortices are point-like, the inverse FFT produces heavy
ringing, so that we have to additionally filter the vor-
ticity fields. In order to avoid convolving transversal
and longitudinal velocity components, we multiply with a
Gaussian filter exp

⇥
�k

2
/k

2
s

⇤
, where ks is a filter scale, di-

rectly in Fourier space when also taking the cross product
with k. For the LPT prediction of vorticity generation,
by contrast, we use the method of [48] to explicitly carry
out the multi-stream average.

In Fig. 5, we show the wave function using domain
colouring in the left panel, along with the semiclassical
vorticity for two di↵erent smoothing scales ks (1/4 and
1/16 of the Nyquist wave number) in the two middle
panels. When using the smaller smoothing scale (second
panel from left), one can clearly see that the vortices are
indeed point-like objects in two dimensions, which have
a positive (red) or negative (blue) sign, and are concen-
trated around the caustics. In comparison with the full
wave function (leftmost panel), one sees that the vortices
are always associated with dark regions, where the am-
plitude of the wave function vanishes. As discussed in
Sec. V B, vorticity is conserved and has thus to be pair-
produced with opposite topological charge. These neigh-
bouring positive and negative vortices are clearly visible
in Fig. 5. For the larger softening (third panel from left),
it becomes obvious that, when averaging over multiple
such quantum vortices, one obtains a large-scale limit
which is very similar to the vorticity pattern obtained for
the ZA (rightmost panel). The agreement of the prop-
erties of the two-dimensional flow between classical and
quantum dynamics after filtering has been discussed in
detail for the cosmological Schrödinger equation by [51].

Remarkably, the propagator method allows us to ex-
plicitly predict the generation of vorticity without re-
quiring a numerical solution of the Schrödinger equation.
Furthermore, the propagator method does not require
multi-stream averaging. This should be contrasted to the
classical (multi)-fluid picture, where multi-stream aver-
aging is mandatory [48] and computationally involved,
even for simple cases like the ZA [52].

Finally, in Fig. 6, we display the vorticity at times
shortly after the first shell-crossing for the smoothing
scale ks = kNy/8. For reasons of comparison we have also
performed an N -body simulation (leftmost panel) which
has been initialised at aini = 1/30. In all panels the
generation of vorticity through multi-streaming is visi-

small scales
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large scales

classical appearance

analog to Schrödinger-Poisson vortices 
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Abstract

We describe a new approach for the purely Eulerian simulation of
incompressible fluids. In it, the fluid state is represented by a C2-
valued wave function evolving under the Schrödinger equation
subject to incompressibility constraints. The underlying dynami-
cal system is Hamiltonian and governed by the kinetic energy of
the fluid together with an energy of Landau-Lifshitz type. The
latter ensures that dynamics due to thin vortical structures, all
important for visual simulation, are faithfully reproduced. This
enables robust simulation of intricate phenomena such as vor-
tical wakes and interacting vortex filaments, even on modestly
sized grids. Our implementation uses a simple splitting method
for time integration, employing the FFT for Schrödinger evolu-
tion as well as constraint projection. Using a standard penalty
method we also allow arbitrary obstacles. The resulting algorithm
is simple, unconditionally stable, and efficient. In particular it
does not require any Lagrangian techniques for advection or to
counteract the loss of vorticity. We demonstrate its use in a va-
riety of scenarios, compare it with experiments, and evaluate it
against benchmark tests. A full implementation is included in the
ancillary materials.

Keywords: discrete differential geometry, fluid simulation,
Schrödinger operator

Concepts: •Mathematics of computing! Partial differential
equations; •Computing methodologies ! Physical simula-
tion; •Applied computing! Physics;

1 Introduction

We introduce incompressible Schrödinger flow (ISF), a new method
to simulate incompressible fluids (Fig. 1, middle). Instead of
describing the fluid evolution in terms of the velocity or vor-
ticity field, ISF evolves a two-component wave function  =
( 1, 2)¸ : M ! C2, which encodes the fluid state on a 3D domain
M . The classical fluid density ⇢ and fluid velocity v = (v1, v2, v3)¸
are extracted from  as

⇢ = | |2 = h , i
R

and ⇢v↵ = ~hh
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, i i
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↵= 1, 2, 3

where h�, i
R
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evolution of these wave functions is governed by the Schrödinger
equation
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Figure 1: Comparing experiment (dry ice vapor, top) with ISF simu-
lation (middle), followed by a visualization of the underlying wave
function  . Vorticity is concentrated within the green region.

subject to the constraints

h� , i i
R
= 0 and | |2 = 1, (2)

which correspond to div(v) = 0 and ⇢ = 1 in the classical vari-
ables (Sec. 4.1). The scalar potential p : M ! R in Eq. (1) is the
Lagrange multiplier for the divergence constraint (App. A), and
we will refer to it as pressure in analogy to the Euler equation. The
reduced Planck constant ~h of quantum Physics becomes the only
parameter for our fluid and controls the quantization of vorticity.
For a large range of initial conditions ISF tends to concentrate
vorticity in filaments of strength 2⇡~h (Fig. 1, bottom).

We call Eqs. (1) and (2) the incompressible Schrödinger equations
and the corresponding flow the incompressible Schrödinger flow.
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We introduce incompressible Schrödinger flow (ISF), a new method
to simulate incompressible fluids (Fig. 1, middle). Instead of
describing the fluid evolution in terms of the velocity or vor-
ticity field, ISF evolves a two-component wave function  =
( 1, 2)¸ : M ! C2, which encodes the fluid state on a 3D domain
M . The classical fluid density ⇢ and fluid velocity v = (v1, v2, v3)¸
are extracted from  as
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Figure 1: Comparing experiment (dry ice vapor, top) with ISF simu-
lation (middle), followed by a visualization of the underlying wave
function  . Vorticity is concentrated within the green region.
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which correspond to div(v) = 0 and ⇢ = 1 in the classical vari-
ables (Sec. 4.1). The scalar potential p : M ! R in Eq. (1) is the
Lagrange multiplier for the divergence constraint (App. A), and
we will refer to it as pressure in analogy to the Euler equation. The
reduced Planck constant ~h of quantum Physics becomes the only
parameter for our fluid and controls the quantization of vorticity.
For a large range of initial conditions ISF tends to concentrate
vorticity in filaments of strength 2⇡~h (Fig. 1, bottom).

We call Eqs. (1) and (2) the incompressible Schrödinger equations
and the corresponding flow the incompressible Schrödinger flow.
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Key Idea

f(x,p, t) ' f~[ (x, t)](p)

correspondence: classical ⇄ quantum

Semiclassical Dynamics

3+3 dim 3 dim

�x�p & ~/2add coarse-graining

f̄W (x,p) fW (x̃, p̃)
Z

d3x̃d3p̃
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i1...in

(x) 3
nZ

d3p pi1 · · · pimf(x,p)
o

mn
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density, velocity, velocity dispersion, …

Cumulant Hierarchy

Key Problem

n=0 n=1 n=2

@tC
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|S|=0
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similar to BBGKY hierarchy of n-particle distributions

1-particle distribution



infinite & coupled 
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Cumulant Hierarchy

Key Problem

Pueblas & Scoccimarro `08

shell-crossing 
C(n�2) ⌘ 0

<latexit sha1_base64="pa14qayKLG/aITadxx8uAx5gcNA=">AAAB/nicbVDLSgNBEOyNrxhfUfHkZTAIegm7UdCbwVw8RjAPSGKYnXSSIbOz68ysEJaAv+LFgyJe/Q5v/oWf4ORx0GhBQ1HVTXeXHwmujet+OqmFxaXllfRqZm19Y3Mru71T1WGsGFZYKEJV96lGwSVWDDcC65FCGvgCa/6gNPZr96g0D+WNGUbYCmhP8i5n1Fipnd0r3SZHstnDO1I4HjXxLub3xG1nc27enYD8Jd6M5C6+YIJyO/vR7IQsDlAaJqjWDc+NTCuhynAmcJRpxhojyga0hw1LJQ1Qt5LJ+SNyaJUO6YbKljRkov6cSGig9TDwbWdATV/Pe2PxP68Rm+55K+Eyig1KNl3UjQUxIRlnQTpcITNiaAllittbCetTRZmxiWVsCN78y39JtZD3TvKF69Nc8XKaBqRhHw7gCDw4gyJcQRkqwCCBR3iGF+fBeXJenbdpa8qZzezCLzjv3zLglck=</latexit>

perfect fluid

analogy: Gaussian is only PDF with a finite set of cumulants



Cumulant Hierarchy

approximate closure
C(n�2) = F [C(0), C(1)]
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infinite & coupled 
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Key Idea

functional F

C(n+2) = �~2
4
rrC(n)

linear

small parameter

analogy: lognormal PDF higher cumulants given by lower ones

deformation quantisation?



numerical

N particles

Interactive Propagation

i~@a = �~2
2
r2 + Ve↵(x, a) 
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Semiclassical Dynamics

PT or numerics
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phase space
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statistical mechanics — which is a closely related prob-
lem. Following those ideas, we construct a phase-space
distribution function f(x,p) from the wave function  (x)
using the Wigner function [42],2 which depends explicitly
on a phase-space coarse-graining scale ~,

fW(x,p)=

Z
d3

x
0

(2⇡)3
exp


�ip · x0

a3/2

�
 (x + ~

2
x0)  ̄(x �

~
2
x0),

(23)
where both  and fW are functions of time a, and  ̄ in-
dicates the complex conjugated wave function. For con-
venience we have absorbed the particle mass m in the
parameter ~, and have included the factor a

�3/2 in front
of the momentum p. This factor stems from the fact that
our wave function is defined in terms of a peculiar veloc-
ity that is related to the conjugate momentum via a

3/2

in EdS; see App. B for details.
The way the Wigner distribution fW(x,p) is con-

structed guarantees that all phase-space information is
encoded in the wave function. It is built in such a way,
that the normalised density % ⌘ 1 + � and the mean pe-
culiar momentum j = (1 + �)v are obtained as the first
two kinetic moments3

%(x) =

Z
d3

p fW(x,p) = | |
2
, (24)

j(x) =

Z
d3

p
p

a3/2
fW(x,p) =

i~
2

[ r ̄ �  ̄r ] . (25)

Note that the velocity can be written as a gradient
of the phase, v(x) = �r�v(x), of the wave function
 =

p
1 + � exp(�i�v/~), if and only if the amplitude

and phase are su�ciently smooth. Shell-crossing how-
ever causes strongly oscillatory behaviour, see Fig. 2,
which also generates vorticity as we shall discuss later
in Secs. VB and VIIC. This vorticity can be nonetheless
extracted from the velocity field v = j/⇢ using the just
introduced kinetic moments.

While in principle we could work with explicit expres-
sions for density and momentum, the Wigner function
provides a concise and elegant way of simultaneously en-
coding density and velocity information, which allows to
infer the Lagrangian displacement and corresponding ve-
locity from its classical limit.

2
We note that the Wigner distribution function is technically not

a proper phase-space distribution when resolved on phase-space

scales smaller than ~, since it can be negative and thus is a quasi-

probability distribution that escapes the simple interpretation as

a probability density. Hence, one should interpret equation (23)

in a coarse-grained sense avoiding violation of uncertainty re-

lations, which can be formalised by using the Husimi distribu-

tion [43]. Since we will be interested in the classical limit, this

coarse-graining scale will ultimately become superfluous.
3

Within the single particle probabilistic Copenhagen interpreta-

tion of quantum mechanics, ⇢ is usually called the ‘probability

density’ and j the (conserved) ‘probability flux’.

A. Fluid variables from the classical limit

Taking the classical limit ~ ! 0, after having ob-
tained the solutions for the Wigner distribution (23) for
nonzero ~, we obtain the phase-space distribution of a
perfect fluid

lim
~!0

fW(x,p) = %(x) �(3)
D

⇣ p

a3/2
� v(x)

⌘
:= ffl(x,p) ,

(26)
with a velocity v(x) that is single-valued before shell-
crossing. Note that the wave-function  itself depends
on ~, as illustrated by the split in amplitude and phase,
 =

p
% exp(�i�v/~). Hence, the limit ~ ! 0 needs to

be taken with care and gives a nonzero peculiar velocity
despite the ~ prefactor in Eq. (25). Using mass conserva-
tion (14), we can formulate the distribution function of
the perfect fluid in Lagrangian coordinates

ffl(x,p) =

Z
d3

q �
(3)

D
[x � q � ⇠(q)] �(3)

D

h p

a3/2
� vL(q)

i
,

(27)

where ⇠(q) is the Lagrangian displacement (12) and
vL(q) = v(x(q; a); a) is the Lagrangian representation of
the velocity evaluated at the Eulerian position x(q; a).
Hence, by performing the classical limit of the Wigner
phase-space distribution (23) for a given wave function,
we can straightforwardly read o↵ the corresponding La-
grangian displacement and velocity.

Let us demonstrate the outlined technique for obtain-
ing the fluid variables, by using the free theory as an
instructive example. The corresponding wave function
 0 =

R
d3

q K0(x, q, a) (ini)(q), obtained from the free
theory propagator K0 from Eq. (2), reads

 0(x; a) =

Z
d3

q

(2⇡i~a)
3
2

exp


i(x � q)2

2~a �
i

~'
(ini)

g
(q)

�
,

(28)

where the part exp[�i'(ini)

g (q)/~] ⌘  
(ini)(q) reflects the

initial condition for the wave function, in accordance with
the used boundary conditions (9). Plugging  0 into the
Wigner distribution (23), we have three integrals over x0,
q and q0. The latter two integrals can be simplified with a
change of variables, using center of mass q+ = (q+q0)/2
and di↵erence coordinates q� = q � q0. We obtain

fW,0 =

Z
d3

x
0

(2⇡)3

Z
d3

q+ d3
q�

(2⇡~a)3
exp


ix0

·

✓
�p

a3/2
+

x � q+

a

◆�

⇥ exp

⇢
�i

~a
⇥
q� ·

�
x � q+

�
+ a �'(q+, q�)

⇤�
, (29)

where we have defined

�'(q+, q�) = '
(ini)

g

�
q++

q�
2

�
� '

(ini)

g

�
q+�

q�
2

�
. (30)

phase-space info in wave function
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statistical mechanics — which is a closely related prob-
lem. Following those ideas, we construct a phase-space
distribution function f(x,p) from the wave function  (x)
using the Wigner function [42],2 which depends explicitly
on a phase-space coarse-graining scale ~,

fW(x,p)=

Z
d3

x
0

(2⇡)3
exp


�ip · x0

a3/2

�
 (x + ~

2
x0)  ̄(x �

~
2
x0),

(23)
where both  and fW are functions of time a, and  ̄ in-
dicates the complex conjugated wave function. For con-
venience we have absorbed the particle mass m in the
parameter ~, and have included the factor a

�3/2 in front
of the momentum p. This factor stems from the fact that
our wave function is defined in terms of a peculiar veloc-
ity that is related to the conjugate momentum via a

3/2

in EdS; see App. B for details.
The way the Wigner distribution fW(x,p) is con-

structed guarantees that all phase-space information is
encoded in the wave function. It is built in such a way,
that the normalised density % ⌘ 1 + � and the mean pe-
culiar momentum j = (1 + �)v are obtained as the first
two kinetic moments3

%(x) =

Z
d3

p fW(x,p) = | |
2
, (24)

j(x) =

Z
d3

p
p

a3/2
fW(x,p) =

i~
2

[ r ̄ �  ̄r ] . (25)

Note that the velocity can be written as a gradient
of the phase, v(x) = �r�v(x), of the wave function
 =

p
1 + � exp(�i�v/~), if and only if the amplitude

and phase are su�ciently smooth. Shell-crossing how-
ever causes strongly oscillatory behaviour, see Fig. 2,
which also generates vorticity as we shall discuss later
in Secs. VB and VIIC. This vorticity can be nonetheless
extracted from the velocity field v = j/⇢ using the just
introduced kinetic moments.

While in principle we could work with explicit expres-
sions for density and momentum, the Wigner function
provides a concise and elegant way of simultaneously en-
coding density and velocity information, which allows to
infer the Lagrangian displacement and corresponding ve-
locity from its classical limit.

2
We note that the Wigner distribution function is technically not

a proper phase-space distribution when resolved on phase-space

scales smaller than ~, since it can be negative and thus is a quasi-

probability distribution that escapes the simple interpretation as

a probability density. Hence, one should interpret equation (23)

in a coarse-grained sense avoiding violation of uncertainty re-

lations, which can be formalised by using the Husimi distribu-

tion [43]. Since we will be interested in the classical limit, this

coarse-graining scale will ultimately become superfluous.
3

Within the single particle probabilistic Copenhagen interpreta-

tion of quantum mechanics, ⇢ is usually called the ‘probability

density’ and j the (conserved) ‘probability flux’.

A. Fluid variables from the classical limit

Taking the classical limit ~ ! 0, after having ob-
tained the solutions for the Wigner distribution (23) for
nonzero ~, we obtain the phase-space distribution of a
perfect fluid

lim
~!0

fW(x,p) = %(x) �(3)
D

⇣ p

a3/2
� v(x)

⌘
:= ffl(x,p) ,

(26)
with a velocity v(x) that is single-valued before shell-
crossing. Note that the wave-function  itself depends
on ~, as illustrated by the split in amplitude and phase,
 =

p
% exp(�i�v/~). Hence, the limit ~ ! 0 needs to

be taken with care and gives a nonzero peculiar velocity
despite the ~ prefactor in Eq. (25). Using mass conserva-
tion (14), we can formulate the distribution function of
the perfect fluid in Lagrangian coordinates

ffl(x,p) =

Z
d3

q �
(3)

D
[x � q � ⇠(q)] �(3)

D

h p

a3/2
� vL(q)

i
,

(27)

where ⇠(q) is the Lagrangian displacement (12) and
vL(q) = v(x(q; a); a) is the Lagrangian representation of
the velocity evaluated at the Eulerian position x(q; a).
Hence, by performing the classical limit of the Wigner
phase-space distribution (23) for a given wave function,
we can straightforwardly read o↵ the corresponding La-
grangian displacement and velocity.

Let us demonstrate the outlined technique for obtain-
ing the fluid variables, by using the free theory as an
instructive example. The corresponding wave function
 0 =

R
d3

q K0(x, q, a) (ini)(q), obtained from the free
theory propagator K0 from Eq. (2), reads

 0(x; a) =

Z
d3

q

(2⇡i~a)
3
2

exp


i(x � q)2

2~a �
i

~'
(ini)

g
(q)

�
,

(28)

where the part exp[�i'(ini)

g (q)/~] ⌘  
(ini)(q) reflects the

initial condition for the wave function, in accordance with
the used boundary conditions (9). Plugging  0 into the
Wigner distribution (23), we have three integrals over x0,
q and q0. The latter two integrals can be simplified with a
change of variables, using center of mass q+ = (q+q0)/2
and di↵erence coordinates q� = q � q0. We obtain

fW,0 =

Z
d3

x
0

(2⇡)3

Z
d3

q+ d3
q�

(2⇡~a)3
exp


ix0

·

✓
�p

a3/2
+

x � q+

a

◆�

⇥ exp

⇢
�i

~a
⇥
q� ·

�
x � q+

�
+ a �'(q+, q�)

⇤�
, (29)

where we have defined

�'(q+, q�) = '
(ini)

g

�
q++

q�
2

�
� '

(ini)

g

�
q+�

q�
2

�
. (30)

f̄W [ , ~ ! 0]
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Since we are considering the classical limit ~ ! 0, the
complex exponent in (29) will vary very quickly for large
q� and cancel out their contribution. Thus, in the clas-
sical limit the most dominant term in the integrand will
come from terms for which q� are small, thereby justify-
ing to approximate �' in a leading-order Taylor expan-
sion around small q�,

�' = q� · r'
(ini)

g
(q+) + O(q3

�) . (31)

In App. C we show that this classical limit is closely re-
lated to the so-called stationary phase approximation.
Returning to the integrand, performing the integrations
over x0 and q�, we then obtain

lim
~!0

fW,0 =

Z
d3

q �
(3)

D

⇥
x � q + ar'

(ini)

g
(q)

⇤

⇥ �
(3)

D

h p

a3/2
+ r'

(ini)

g
(q)

i
, (32)

where we have renamed the integration variable accord-
ing to q+ ! q for convenience. Comparing this to
the fluid distribution function in Lagrangian coordinates,
Eq. (27), we can read o↵ the displacement and velocity

⇠0(q) = �ar'
(ini)

g
(q) , v0(q) = �r'

(ini)

g
(q) . (33)

These solutions agree with those obtained from the ZA
(cf. Eq. (17a)), and thus, in the classical limit and to
leading order in perturbation theory, we reproduce re-
sults from classical fluid dynamics. (See Eq. (46) for the
classical limit at second order of our propagator method.)

Equipped with a method to relate semiclassical propa-
gators and wave functions to fluid observables, we will
proceed to perturbatively solve the Schrödinger equa-
tions for the propagator and translate our solutions to
the Lagrangian displacement and velocity field in Sec. VI.

B. The appearance of vorticity after shell-crossing

Under certain circumstances, the Kelvin-Helmholtz in-
variant �, given in Eq. (21), also persists for quantum
and semiclassical systems. In particular, for su�ciently
smooth initial conditions and by using a Madelung trans-
formation, in Ref. [44] it has been shown that � is also
an invariant under evolution with a quantum Hamilto-
nian (i.e., under the Schrödinger equation), if one simply
replaces v with j/⇢ and ensures that the integral con-
tour goes only through regions where the velocity is well
defined in the course of the evolution.

In quantum systems, vorticity is quantised [45, 46].
Since the wave function is always single-valued, quantised
vorticity can only arise from topological defects where the
phase factor, �v/~, undergoes a localised phase jump of
integer multiples of 2⇡. Since � has to vanish for initially
irrotational systems, it is topologically required that vor-
tices can only be produced in pairs [47], called rotons, i.e.,

1

2⇡~

I

C(a)

r�v · dx = n+ � n� = 0 , n± 2 N , (34)

and thus, the sum of negative n� and positive n+ topo-
logical charges is conserved.

Later in Sec. VII we show that at times shortly after
shell-crossing, where vorticity is generated, we indeed ob-
serve the appearance of such rotons.

VI. PERTURBATIVE TREATMENT OF THE
PROPAGATOR

In the following, we will use SPT results for Ve↵ , as
discussed in Sec. III as an input to the propagator equa-
tion (5) and solve it in a perturbative fashion. From this
perturbative solution, we will extract the Lagrangian dis-
placement and velocity using the method described in
Sec. V.

Since we already know the solution in the absence of
the e↵ective potential, we split the nonlinear propagator
into the free propagator and an exponential term

K(q,x; a) = K0(q,x; a) exp

✓
i

~Stid(q,x; a)

◆
. (35)

When combining the exponentials, one recognises the to-
tal action S = S0 +Stid as a sum of the free particle con-
tribution S0 from Eq. (1) and the tidal interaction terms
encoded in Stid. Plugging the Ansatz (35) for the to-
tal propagator K into the evolution Eq. (5), and using
Eq. (4a), one obtains a di↵erential equation for the inter-
action term Stid = Stid(q,x; a)

D̂a(q,x) Stid �
i~
2
r2

x Stid +
(rx Stid)2

2
= �Ve↵ , (36)

where D̂a(q,x) ⌘ @a + (1/a)[x � q] · rx . The source
term is given in terms of a time-Taylor series for the

e↵ective potential Ve↵(x; a) ⌘
P1

n=2
V

(n)

e↵
(x) a

n�2, and
for the interaction part of the action one can impose a
PT Ansatz

Stid(q,x; a) =
1X

n=1

Sn(q,x; a) , (37)

where Sn is ideally O(an). In the following section, we
explicitly solve for the NLO part S1, which is the leading-
order contribution to Stid.

A. Next-to-leading order propagator

At next-to-leading order (NLO), the e↵ective poten-

tial V
(2)

e↵
(x) is time-independent and given by Eq. (11).

Hence, the NLO contribution to Stid, called S1, is ex-
pected to be of order a. Since the derivative operator,
D̂a, decreases the power of a by one, the other two terms
on the LHS of Eq. (36) are of higher order and do not con-
tribute to S1. The evolution equation (36) thus simplifies
to

D̂a(q,x) S1(q,x; a) = �V
(2)

e↵
(x) . (38)
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time evolution is given by the Schrödinger equation

i\m⇡kU = �
\2

2
r

2
G
kU ++e� kU , (16)

where, +e� is an “e�ective” gravitational potential defined in relation
to the fluid equations (1). In PPT, +e� is treated as an external
potential determined by standard perturbation theory. The evolution
is expressed through the propagator  (q, x;⇡) that propagates the
initial wave function (defined at ⇡ = 0)

kini
U
(q) =

q
1 + Xini

U
(q) exp


i
\
iini

(q)

�
(17)

to the current state at time ⇡ and position x, i.e.,

kU (x;⇡) =
π

d3@  (q, x;⇡) kini
U
(q) . (18)

At leading order +e� ⌘ 0, and the solution of the resulting potential-
free Schrödinger equation (16) is readily obtained from the “free
propagator”

 free (q, x;⇡) = (2⇡i\⇡)�3/2 exp
h
i(x � q)2/(2\⇡)

i
, (19)

where the prefactor guarantees that Eq. (18) returns kini
U

for ⇡ ! 0.
At next-to-leading order, dubbed 2PPT, a time-independent +e�

becomes relevant and is given by the expression

r
2+e� =

3
7

⇣
iini
,;;
iini
,<<

� iini
,;<

iini
,;<

⌘
. (20)

As shown in the companion paper, the 2PPT propagator reads

 (q, x; ⇡) =  free (q, x; ⇡) exp

�

i⇡
2\

(+e� (q) ++e� (x))

�
. (21)

The semiclassical limits of the free and 2PPT propagators return,
respectively, the classical Zel’dovich approximation and the second-
order improvement 2LPT. Uhlemann et al. (2019) have shown that
the 2PPT results are in fact more accurate than 2LPT since additional
symmetries are preserved due to the underlying Hamiltonian structure
of (16). Notably, no spurious higher-order vorticity is excited.

Having obtained numerical solutions for the wave function (see the
following paragraph for details), the desired Eulerian fields, e.g., the
density dU = 1 + XU and the momentum density field 0U = dUvU
for each species, are

dU (x, 0) = kU kU
, and (22a)

0U (x, 0) =
i\
2

⇣
kUrkU

� k
U
rkU

⌘
, (22b)

where an overline denotes complex conjugation. In principle, one
could also extract an e�ective temperature from the next higher
moment, but we will neglect finite temperature e�ects here altogether
and always assume the cold limit on the PT side.

In Figure 4 we show the baryon density, velocity vU = 0U/dU,
and the 2PPT density di�erence Xbc for a ! = 250 ⌘�1Mpc box with
5123 resolution elements at I = 8 (which is much later than the time
we would initialize a simulation and was just chosen for illustrative
purposes). For further numerical tests of PPT in the single-fluid case
we refer to Uhlemann et al. (2019).

Numerical implementation of PPT. Numerically, the expression
for the free propagator (19) is most conveniently evaluated using a
discrete Fourier transform (DFT), since the cyclic convolution with
the propagator becomes a simple multiplication in Fourier space.
Let us therefore assume without change of notation that all spatial
coordinates, x and q, refer to positions on a discrete regular grid

baryon over-density �b baryon velocity vb,x

baryon-CDM difference �bc baryon-CDM ratio (1 + �b)/(1 + �c)

0 2 4 �2 0 2

�0.1 0.0 0.1 0.9 1.0 1.1

Figure 4. Eulerian fields at I = 8 obtained with 2PPT as described in
Section 2.4: the baryon overdensity Xb (top left), x-component of the baryon
peculiar velocity field Eb,G (top right), the compensated density di�erence
Xbc (bottom left), and the ratio of baryon to CDM density fluctuations (bottom
right). We show an G-H-slice through the highest density point (Xb,max ' 13,
north of the centre of the image) for a box of side-length 250 ⌘�1Mpc computed
using a resolution of 5123.

with spacing �, whenever we refer to the numerical implementation.
Then, the equivalent statement of (19) at the operational level can be
executed using the “drift” operator D̂, defined through

kU (x, 0) = D̂kini
U

(23)

=: DFT
k!x

�1
⇢
exp


�i\⇡+(0)

:2

2

�
DFT
q!k

n
kini
U
(q)

o�
,

where k denotes a discrete wave vector and : its modulus. Similarly,
to incorporate the aforementioned 2PPT correction, one introduces
the “kick” operator

K̂ := exp

�

i
\
⇡+(0)

2
+e�

�
(24)

in real space, which corresponds to a half ‘time step’ in ⇡+. The final
2PPT operator evolution equation is given by the single-step leap frog

kU (x; 0) = K̂ D̂ K̂kini
U

. (25)

It can be e�ectively evaluated by performing the drift step in Fourier
space and the kick steps in regular space.

The \-parameter. Finally, for numerical implementations of PPT,
one chooses a finite \ that is as small as possible in order to be
closest to the semi-classical limit. Since we evaluate the propagator
using a DFT, the smallest numerically possible \ is determined by the
Nyquist–Shannon sampling theorem, which requires that the phase in
adjacent sampling points changes by at most ⇡. This implies

\ �
1
⇡

max
q,3

���iini
(q) � iini

(q + � ê
3
)

��� , (26)
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Fig. 2. Density fields (left and middle column) and quasar flux field in the FGP approximation (right column) in physical space (top panels) and in
redshift space (bottom panels), with the line-of-sight direction upwards. The leftmost panels use the Zel’dovich approximation and CIC deposit,
the others use the PPT formalism. In all cases we used 2563 resolution elements, the box size (and extent of each image) used for this comparison
is 256 h�1Mpc at z = 2.5. The thickness of the projected slice is 2h�1Mpc and white pixels in the CIC panels indicate zero particles deposited.

can make the approximation of a distant observer, which implies
that the redshift space distortion can be chosen to coincide with
a Cartesian axis. Specifically, a particle is not observed to be at
its Eulerian position x, as we discussed in Sec. 2.1, but instead
at its redshift space position s, because of deviations from pure
Hubble expansion (peculiar velocities). In LPT, this is given by

s := x + f (a) ( · êLOS) êLOS, (7)

where êLOS is a unit vector pointing along the line-of-sight
(which we shall without loss of generality assume to be along
the z-axis),  is the displacement field between Lagrangian and
Eulerian coordinates, := x� q, and f = d log D+/d log a. This
is quite obviously simply a velocity dependent displacement, and
it can therefore be trivially included in an additional propagator
from Eulerian to redshift space, given as

KRSD(s, x; a) = N exp
"

i
~

1
2

((s � x) · êLOS)2

f (a) D+(a)

#
, (8)

with N a normalisation that has to be suitably chosen. E↵ec-
tively, at leading order PPT, the propagators can be trivially com-
bined into a single propagator from Lagrangian space to redshift
space, which in Fourier space takes the form

bK(k; a) := exp
"
�

i~
2

⇣
k2 + f (a) (k · êLOS)2

⌘
D+(a)

#
. (9)

While we did not use the next-to-leading order (NLO) version of
PPT (cf. Uhlemann et al. 2019) here, the propagation to redshift
space can also be applied at NLO, by performing the propagation
to redshift space after carrying out the ‘kick-drift-kick’ endpoint
approximation to the path integral (their eq. D4).

2.4. Modelling of the Ly-↵ -forest

We have explained above how PPT can be used to predict a
quasi-linear density field ⇢ =   , consistent with the Zel’dovich
approximation, from a wave function  propagated forwards to
time a. In order to model the absorption of photons from the
quasar, we employed the fluctuating Gunn-Peterson approxima-
tion (Gunn & Peterson 1965). The fractional transmitted flux is
given by

F = e�⌧, (10)

where ⌧ is the optical depth. In Eulerian space, the optical depth
field reads

⌧(x) := A ⇢(x)�, (11)

where A and � are heuristic parameters, which are given by the
physical state of the intergalactic medium. In a next and final
step, we want to map this optical depth to redshift space and
compute the transmitted quasar flux. In order to achieve this, we
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FIG. 6: The figure shows best-fit flux power spectrum ob-
tained with analysis on the combined data sets (XQ-100 - cir-
cles, MIKE - squares and HIRES - triangles) using the REF
prior model (see main text for detail). Di↵erent colours rep-
resent di↵erent redshifts, that are indicated on the right hand
side of the plot, ranging from z = 3 to z = 5.4. The dashed
lines show the flux power spectrum when all the parameters
were kept at their best-fit values, except the mass of the FDM
particle was decreased to 10 ⇥ 10�22eV.
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a@⌧� = �r[(1 + �)r�]

a@⌧�� = ��

2
(r�)2 � a2�V / ��

5

Perturbative expansion The density contrast � and the di-
vergence of velocity ✓ = r · v = ��/am can be written in
Fourier space and expanded in terms of the scale factor a(⌧)
for the fastest growing mode

�(⌧,k) =
1X

n=1

an(⌧) �n(k) , (18a)

✓(⌧,k) = H(⌧)
1X

n=1

an(⌧) ✓n(k) . (18b)

Although we describe the perturbative procedure here for the
EdS case, one can easily translate the result to a general
⇤CDM universe, as described in [2], by replacing a ! D
and H ! f H, where D(⌧) is the linear growth function and
f (⌧) = d ln D(⌧)/d ln a(⌧) the linear growth rate. Although
this replacement is not an exact it is a very good approxima-
tion [2].

We define the integral kernels Fn and Gn of � and ✓ with

respect to the linear density contrast �1 as

�n(k) =
Z

d3p1 . . . d3pn

(2⇡)3(n�1) �D(k � p1...n) Fn(p1, . . . ,pn) ⇥

⇥ �1(p1) . . . �1(pn) (18c)

✓n(k) = �
Z

d3p1 . . . d3pn

(2⇡)3(n�1) �D(k � p1...n) Gn(p1, . . . ,pn) ⇥

⇥ �1(p1) . . . �1(pn) , (18d)

where p1...n := p1+· · ·+pn. Substituting the ansatzes (18) into
the fluid equations (16a) and (17a) rewritten in Fourier space
allows to separate the time dependence and obtain for n > 1

n�n(k) + ✓n(k) = �
n�1X

m=1

k1 · k2

k2
1

�n�m(k2)✓m(k1) ,

3�n(k) + (1 + 2n)✓n(k) = �
n�1X

m=1

k2(k1 · k2)
2k2

1k2
2

✓n�m(k2)✓m(k1) ,

where k := k1 + k2. Solving this system for �n and ✓n, re-
spectively we obtain recursion relations for Fn and Gn with
starting values F1 = G1 = 1, compare [23]

Fn(p1, . . . ,pn) =
n�1X

m=1

Gm(p1, . . . ,pm)
(2n + 3)(n � 1)

"
(2n + 1)

k · k1

k2
1

Fn�m(pm+1, . . . ,pn) +
k2(k1 · k2)

k2
1k2

2
Gn�m(pm+1, . . . ,pn)

#
, (20a)

Gn(p1, . . . ,pn) =
n�1X

m=1

Gm(p1, . . . ,pm)
(2n + 3)(n � 1)

"
3
k · k1

k2
1

Fn�m(pm+1, . . . ,pn) + n
k2(k1 · k2)

k2
1k2

2
Gn�m(pm+1, . . . ,pn)

#
, (20b)

where k1 := p1+...+pm,k2 := pm+1+...+pn and k := k1+k2.

B. Lagrangian Perturbation Theory

In the Lagrangian scheme [2, 24] the quantity under con-
sideration is the displacement field  (⌧, q) which maps initial
particle or fluid element positions q into their final Eulerian
position x(⌧)

x(⌧) = q +  (⌧, q) . (21)

The Jacobian Fi j of the transformation from Eulerian to La-
grangian coordinates is given by

Fi j =
@xi

@q j
= �i j +  i, j , (22a)

and has the following properties

JF = det
h
�i j +  i, j

i
, F�1

i j =
1
2 J�1

F "ilm" jpqFplFqm , (22b)

where "i jk refers to the totally antisymmetric Levi-Civita sym-
bol. Mass conservation and the absence of decaying modes

imply the following relation between the Jacobian determi-
nant JF(q) and the density contrast

⇢̄[1 + �(x)] d3x = ⇢̄ d3q , 1 + � = J�1
F . (23)

The equation of motion for the Eulerian position x is

d2x

d⌧2 +H(⌧)
dx
d⌧
= �rxV . (24a)

By taking the divergence of (24a) and using the Poisson equa-
tion (16c) as well as mass conservation (23) one obtains a
closed equation for the displacement field  

JF(⌧, q) rx ·

"
d2 

d⌧2 +H(⌧)
d 
d⌧

#
= ⇢̄ [JF(⌧, q) � 1] , (24b)

supplemented by the constraint r ⇥ v = 0

"i jk(Fm j)�1F0km = 0 . (24c)

The exact displacement field  (⌧, q) can be expanded in
a series with spatial parts  (n)(q) and temporal coe�cients
using the scale factor a(⌧), concentrating on an EdS universe

 (⌧, q) =
1X

n=1

an(⌧) (n)(q) . (25)

5

Perturbative expansion The density contrast � and the di-
vergence of velocity ✓ = r · v = ��/am can be written in
Fourier space and expanded in terms of the scale factor a(⌧)
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�(⌧,k) =
1X

n=1

an(⌧) �n(k) , (18a)

✓(⌧,k) = H(⌧)
1X
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an(⌧) ✓n(k) . (18b)

Although we describe the perturbative procedure here for the
EdS case, one can easily translate the result to a general
⇤CDM universe, as described in [2], by replacing a ! D
and H ! f H, where D(⌧) is the linear growth function and
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Z
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where p1...n := p1+· · ·+pn. Substituting the ansatzes (18) into
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k2
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2k2

1k2
2

✓n�m(k2)✓m(k1) ,
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1k2
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Gn�m(pm+1, . . . ,pn)

#
, (20b)
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B. Lagrangian Perturbation Theory
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determine linear solution 

& plug back in

�(⌧,k) =
X

n

an(⌧)�n(k)

Perfect fluid perturbation theory

get recursion relations 
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Schrödinger-Poisson inspires 

closure of cumulant hierarchy


Cora Uhlemann, DAMTP Cambridge

as free parameter ~

Schrödinger-Poisson equation

�V (x, t) /

⇢(x,t)
z }| {
| (x, t)|2 �1i~ @t (x, t) = Ĥ (x, t)

self-gravitating field

 =
p
⇢ exp(i�/~)

Problems

• not manifestly positive

• time evolution not quite like Vlasov

cure: add coarse-graining �x�p & ~/2

f̄W (x,p) fW (x̃, p̃)
Z

d3x̃d3p̃

(⇡�x�p)3
exp


� (x� x̃)2

2�2
x

� (p� p̃)2

2�2
p

�
fW (x,p) =

fW (x,p) =

Z
d3x̃

(2⇡~)3 exp


2
i

~p · x̃
�
 (x� x̃) ̄(x+ x̃)

Features

• same # degrees of freedom as fluid

• fluid model as limit

• no singularity

• nonzero higher cumulants

Schrödinger method

~ ! 0



Quantal methods for closure of 

classical cumulant hierarchies


Cora Uhlemann, DAMTP Cambridge

• Schrödinger: one wave function to rule them all 


Quantal method: Lessons

Closing a cumulant hierarchy with finitely generated cumulants

• Idea: finite # of fundamental functions rather than finite # of cumulants


• cumulant generator = (linear) operators on fundamental functions


• Idea: make evolution for higher cumulants automatically fulfilled  


• given initial conditions & evolution for lower cumulants


Using the following identities for exponentiated derivatives (that can be derived using the
product rule, series expansions and Cauchy product),

exp

✓
~
2
J ·r

◆
[g(x)h(x)] = exp

✓
~
2
J ·r

◆
[g(x)] exp

✓
~
2
J ·r

◆
[h(x)] (2.30)

sinh

✓
~
2
J ·r

◆⇥
g(x)2

⇤
= 2 sinh

✓
~
2
J ·r

◆
g(x) cosh

✓
~
2
J ·r

◆
g(x) (2.31)

cosh

✓
~
2
J ·r

◆
[g(x)h(x)] =


sinh

✓
~
2
J ·r

◆
g(x)

� 
sinh

✓
~
2
J ·r

◆
h(x)

�
(2.32)

+


cosh

✓
~
2
J ·r

◆
g(x)

� 
cosh

✓
~
2
J ·r

◆
h(x)

�
(2.33)

we can simplify the consistency check to

2

~ sinh

✓
~
2
J ·r

◆
� J ·r

�
mV

?
= 0 , (2.34)

which is approximately fulfilled given that ~2 is small and spatial derivatives of the gravita-
tional potential are expected to be controlled as well.

2.5 General assumptions that lead to Schrödinger

Given the Schrödinger method as one example of a linear and time-independent functional
that solves the underlying dynamics approximately but consistently, one could ask whether
there could be a different linear (differential) operator

lnG[J ] = On(J) lnn+ iO�(J)� (2.35)

= On(J) lnn+ iÕ�(J)J · v (2.36)

such that the evolution equations for the higher cumulants induced by this operator are
approximately automatically fulfilled given the evolution equation for lnn and � or v. To set
the first two cumulants to be lnn and v or r�, we need to have that

On(J = 0) = 1 ,rJOn(J = 0) = 0 (2.37)

O�(J = 0) = 0 ,rJO�(J = 0) = rx or Õ�(J = 0) = 1 . (2.38)

The evolution equations for the fundamental degrees of freedom are given by the conti-
nuity and Euler or Bernoulli equation

@t lnn =
�1

ma2

r(nr�)

n
=

�1

ma2

⇥
r2

�+r lnn ·r�
⇤

(2.39)

@tv =
�1

a2m

(
(v ·r)v +r · C(2) + C

(2) ·r lnn

)
�mrV (2.40)

@t� = � 1

a2m

⇢
1

2
(r�)2 + C̃

(2)

�
�mV (2.41)

One can check whether for the potential flow v = r� the Bernoulli equation (2.41) follows
from the Euler equation (2.40) by deriving the equation for vorticity w = r⇥ v. For this it
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Generating functional The moments M (n) of the phase space distribution function f(x,p)
can be obtained from the generating functional G[J ] by taking functional derivatives. In a
similar way the cumulants can be determined from the moments. They provide a good way
to understand the prominent dust-model which is the only known consistent truncation of
the Vlasov hierarchy. The generating functional, moments and cumulants are given by

G[J ] =

ˆ
d3
p exp [ip · J ] f , (1.2a)

M
(n)
i1···in :=

ˆ
d3
p pi1 . . . pinf = (�i)n

@
n
G[J ]

@Ji1 . . . @Jin

����
J=0

, (1.2b)

C
(n)
i1···in := (�i)n

@
n lnG[J ]

@Ji1 . . . @Jin

����
J=0

. (1.2c)

Vlasov hierarchy The evolution equations for the moments M (n) of the phase space distri-
bution f can be determined from the Vlasov equation (1.1a) by multiplying it with pi1 · · · pin
and performing an integration over momentum

@tM
(n)
i1···in = � 1

a2m
rjM

(n+1)
i1···inj �mr(i1V ·M (n�1)

i2···in) . (1.3)

Indices enclosed in round brackets imply symmetrization according to a(ibj) = aibj + ajbi.
It turns out that a coupled Vlasov hierarchy for the moments emerges which means that in
order to determine the time-evolution of the n-th moment the (n+1)-th moment is required.
This closure problem for the hierarchy becomes more transparent when looking at the dy-
namical equation for the n-th cumulant C

(n). The time evolution can be determined from
the generating functional (1.2a) using the Vlasov equation (1.1a) and reads

@tC
(n)
i1···in = � 1

a2m

(
rjC

(n+1)
i1···inj +

X

S2P({i1,··· ,in})

C
(n+1�|S|)
l /2S,j ·rjC

(|S|)
k2S

)
� �n1 ·mri1V , (1.4)

where S runs through the power set P of indices {i1, · · · , in} and the Kronecker �n1 in last
term ensures that the potential contributes only to the equation for the first cumulant C

(1)

describing velocity.
The Vlasov hierarchy can also be expressed in terms of the moment or cumulant gen-

erating function directly. For the moment generating function that simply corresponds to a
Fourier transformation with respect to momentum and hence reads

@tG[J ,x] =
i

a2m
rJ ·rxG� imGJ ·rxV (1.5)

For the cumulant generating function we get

@t lnG[J ,x] =
i

a2m
(rJ ·rx lnG+rJ lnG ·rx lnG)� imJ ·rxV (1.6)

One can decide to expand either the moment generator G[J ,x] or the cumulant generator
lnG[J ,x] in a the power series in J . Note that there are no distributions for which the
cumulant generator is a polynomial in J unless one has a Gaussian-like distribution which
corresponds to a perfect pressureless fluid and describes the dynamics before shell-crossing.
This suggests that for detecting multi-streaming behaviour that is generated dynamically
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Since in our case the only two degrees of freedom are the amplitude n and phase � of the
wavefunction it suffices to solve their evolution equations which are given by

@tn = � 1

ma2
r · (nr�) , (2.19a)

@t� = � 1

2a2m
(r�)2 �mV +

~2
2a2m

�
p
np
n

, (2.19b)

�V =
4⇡G ⇢0

a

⇣
n� 1

⌘
. (2.19c)

The Schrödinger method is special because the cumulant generating function is linear
in the lower order cumulants! The generating functional can be computed by plugging the
expression for fW in terms of  =

p
n exp (i�/~) in (1.2a) and simplified by adopting the

shorthand notation g
±(x0) := g

�
x0 ± ~

2J
�
. Now one can make use of the fact that a shift

in the argument of a function can be expressed through an exponential derivative operator
action on the same function f(x+ ~

2J) = exp(~2J ·r)f(x)

G[J ] =
p
n+n� exp

⇥
i

~(�
+ � �

�)
⇤
, (2.20)

lnG[J ] =
1

2

⇥
ln(n+) + ln(n�)

⇤
+
⇥
i

~(�
+ � �

�)
⇤

(2.21)

= cosh

✓
~
2
J ·r

◆
lnn(x) + 2

i

~ sinh

✓
~
2
J ·r

◆
�(x) (2.22)

=
1

2

X

|↵|�0

1

↵!

✓
~
2

◆|↵| ⇣ h
1 + (�1)|↵|

i
@
↵

x(lnn)(x) +
i

~

h
1� (�1)|↵|

i
@
↵

x�(x)
⌘
· J↵

(2.23)

The Schrödinger method amounts to assuming that the cumulant generator is a specific
linear functional of the two underlying dynamical entities lnn and � that hence generates
cumulants at all orders. To check the consistency of the Schrödinger method, we can simply
check whether the dynamical equation for the cumulant generator

@t lnG =
i

a2m
[rJ ·rx lnG+rJ lnG ·rx lnG]� imJ ·rV

is approximately fulfilled if the time-evolution equations for lnn and � are solved.

cosh

✓
~
2
J ·r

◆
@t lnn(x) + 2

i

~ sinh

✓
~
2
J ·r

◆
@t�(x) (2.24)

= cosh

✓
~
2
J ·r

◆
�1

a2m

�
r2

�+r(lnn)r�
��

(2.25)

+ 2
i

~ sinh

✓
~
2
J ·r

◆
�1

2a2m

✓
(r�)2 � ~2

2

✓
r2 lnn+

1

2
(r lnn)2

◆◆
�mV

�
(2.26)

?
=

i

a2m

(
~
2
sinh

✓
~
2
J ·r

◆
r2 lnn+ i cosh

✓
~
2
J ·r

◆
r2

� (2.27)

+


~
2
sinh

✓
~
2
J ·r

◆
r lnn+ i cosh

✓
~
2
J ·r

◆
r�

�
(2.28)

·

cosh

✓
~
2
J ·r

◆
r lnn+ 2

i

~ sinh

✓
~
2
J ·r

◆
r�

�)
� imJ ·rV (2.29)
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Using the following identities for exponentiated derivatives (that can be derived using the
product rule, series expansions and Cauchy product),

exp

✓
~
2
J ·r

◆
[g(x)h(x)] = exp

✓
~
2
J ·r

◆
[g(x)] exp

✓
~
2
J ·r

◆
[h(x)] (2.30)

sinh

✓
~
2
J ·r

◆⇥
g(x)2

⇤
= 2 sinh

✓
~
2
J ·r

◆
g(x) cosh

✓
~
2
J ·r

◆
g(x) (2.31)

cosh

✓
~
2
J ·r

◆
[g(x)h(x)] =


sinh

✓
~
2
J ·r

◆
g(x)

� 
sinh

✓
~
2
J ·r

◆
h(x)

�
(2.32)

+


cosh

✓
~
2
J ·r

◆
g(x)

� 
cosh

✓
~
2
J ·r

◆
h(x)

�
(2.33)

we can simplify the consistency check to

2

~ sinh

✓
~
2
J ·r

◆
� J ·r

�
mV

?
= 0 , (2.34)

which is approximately fulfilled given that ~2 is small and spatial derivatives of the gravita-
tional potential are expected to be controlled as well.

2.5 General assumptions that lead to Schrödinger

Given the Schrödinger method as one example of a linear and time-independent functional
that solves the underlying dynamics approximately but consistently, one could ask whether
there could be a different linear (differential) operator

lnG[J ] = On(J) lnn+ iO�(J)� (2.35)

= On(J) lnn+ iÕ�(J)J · v (2.36)

such that the evolution equations for the higher cumulants induced by this operator are
approximately automatically fulfilled given the evolution equation for lnn and � or v. To set
the first two cumulants to be lnn and v or r�, we need to have that

On(J = 0) = 1 ,rJOn(J = 0) = 0 (2.37)

O�(J = 0) = 0 ,rJO�(J = 0) = rx or Õ�(J = 0) = 1 . (2.38)

The evolution equations for the fundamental degrees of freedom are given by the conti-
nuity and Euler or Bernoulli equation

@t lnn =
�1

ma2

r(nr�)

n
=

�1

ma2

⇥
r2

�+r lnn ·r�
⇤

(2.39)

@tv =
�1

a2m

(
(v ·r)v +r · C(2) + C

(2) ·r lnn

)
�mrV (2.40)

@t� = � 1

a2m

⇢
1

2
(r�)2 + C̃

(2)

�
�mV (2.41)

One can check whether for the potential flow v = r� the Bernoulli equation (2.41) follows
from the Euler equation (2.40) by deriving the equation for vorticity w = r⇥ v. For this it
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Using the following identities for exponentiated derivatives (that can be derived using the
product rule, series expansions and Cauchy product),

exp

✓
~
2
J ·r

◆
[g(x)h(x)] = exp

✓
~
2
J ·r

◆
[g(x)] exp

✓
~
2
J ·r

◆
[h(x)] (2.30)

sinh

✓
~
2
J ·r

◆⇥
g(x)2

⇤
= 2 sinh

✓
~
2
J ·r

◆
g(x) cosh

✓
~
2
J ·r

◆
g(x) (2.31)

cosh

✓
~
2
J ·r

◆
[g(x)h(x)] =


sinh

✓
~
2
J ·r

◆
g(x)

� 
sinh

✓
~
2
J ·r

◆
h(x)

�
(2.32)

+


cosh

✓
~
2
J ·r

◆
g(x)

� 
cosh

✓
~
2
J ·r

◆
h(x)

�
(2.33)

we can simplify the consistency check to

2

~ sinh

✓
~
2
J ·r

◆
� J ·r

�
mV

?
= 0 , (2.34)

which is approximately fulfilled given that ~2 is small and spatial derivatives of the gravita-
tional potential are expected to be controlled as well.

2.5 General assumptions that lead to Schrödinger

Given the Schrödinger method as one example of a linear and time-independent functional
that solves the underlying dynamics approximately but consistently, one could ask whether
there could be a different linear (differential) operator

lnG[J ] = On(J) lnn+ iO�(J)� (2.35)

= On(J) lnn+ iÕ�(J)J · v (2.36)

such that the evolution equations for the higher cumulants induced by this operator are
approximately automatically fulfilled given the evolution equation for lnn and � or v. To set
the first two cumulants to be lnn and v or r�, we need to have that

On(J = 0) = 1 ,rJOn(J = 0) = 0 (2.37)

O�(J = 0) = 0 ,rJO�(J = 0) = rx or Õ�(J = 0) = 1 . (2.38)

The evolution equations for the fundamental degrees of freedom are given by the conti-
nuity and Euler or Bernoulli equation

@t lnn =
�1

ma2

r(nr�)

n
=

�1

ma2

⇥
r2

�+r lnn ·r�
⇤

(2.39)

@tv =
�1

a2m

(
(v ·r)v +r · C(2) + C

(2) ·r lnn

)
�mrV (2.40)

@t� = � 1

a2m

⇢
1

2
(r�)2 + C̃

(2)

�
�mV (2.41)

One can check whether for the potential flow v = r� the Bernoulli equation (2.41) follows
from the Euler equation (2.40) by deriving the equation for vorticity w = r⇥ v. For this it
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Using the following identities for exponentiated derivatives (that can be derived using the
product rule, series expansions and Cauchy product),

exp

✓
~
2
J ·r

◆
[g(x)h(x)] = exp

✓
~
2
J ·r

◆
[g(x)] exp

✓
~
2
J ·r

◆
[h(x)] (2.30)

sinh

✓
~
2
J ·r

◆⇥
g(x)2

⇤
= 2 sinh

✓
~
2
J ·r

◆
g(x) cosh

✓
~
2
J ·r

◆
g(x) (2.31)

cosh

✓
~
2
J ·r

◆
[g(x)h(x)] =


sinh

✓
~
2
J ·r

◆
g(x)

� 
sinh

✓
~
2
J ·r

◆
h(x)

�
(2.32)

+


cosh

✓
~
2
J ·r

◆
g(x)

� 
cosh

✓
~
2
J ·r

◆
h(x)

�

Note that almost identical rules hold for sinh ! sin and cosh ! cos where only the sign of
the first term in (2.32) gets flipped. we can simplify the consistency check to


2

~ sinh

✓
~
2
J ·r

◆
� J ·r

�
mV

?
= 0 , (2.33)

which is approximately fulfilled given that ~2 is small and spatial derivatives of the gravita-
tional potential are expected to be controlled as well.

2.5 General assumptions that lead to Schrödinger

Given the Schrödinger method as one example of a linear and time-independent functional
that solves the underlying dynamics approximately but consistently, one could ask whether
there could be a different linear (differential) operator

lnG[J ] = On(J) lnn+ iO�(J)� (2.34)

= On(J) lnn+ iÕ�(J)J · v (2.35)

such that the evolution equations for the higher cumulants induced by this operator are
approximately automatically fulfilled given the evolution equation for lnn and � or v. To set
the first two cumulants to be lnn and v or r�, we need to have that

On(J = 0) = 1 ,rJOn(J = 0) = 0 (2.36)

O�(J = 0) = 0 ,rJO�(J = 0) = rx or Õ�(J = 0) = 1 . (2.37)

The evolution equations for the fundamental degrees of freedom are given by the conti-
nuity and Euler or Bernoulli equation

@t lnn =
�1

a2m

⇥
r2

�+r lnn ·r�
⇤
=

�1

a2m

r(nr�)

n
(2.38)

@tv =
�1

a2m

(
(v ·r)v +r · C(2) + C

(2) ·r lnn

)
�mrV (2.39)

@t� = � 1

a2m

⇢
1

2
(r�)2 + C̃

(2)

�
�mV (2.40)
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FIG. 9. The solid curves show the zeros of<( ) and dashed curves
the zeros of =( ). <( ) and =( ) are depicted in Fig. 2 upper pan-
els. The zeros of  are the crossing of both types and encircled by
ellipses. The same ellipses are shown on to right panel, which is a
reproduction of Fig. 2 showing the phase �/~̃ the wave function. The
color and orientation of the ellipses correspond to the orientation of
the circulation: blue/horizontal (red/vertical) corresponds to negative
(positive) winding number.

before the end of the simulation so that the optimal value of ~̃
is ⇠ 5 ⇥ 10�10 for this particular set of simulation parameters
and initial conditions. For this value and �x � 0.0035L, we
find hn̄c/nh � 1i < 1% at all times.

We conclude that the ScM can be successfully used to solve
the coarse grained Vlasov equation. The accuracy of that so-
lution is driven by ~̃. Joint optimization of |S (3)

~̃
| ⌧ |S (3)

cgV| and
|�Etot | ⌧ 1 lead to an optimal value of ~̃.

V. DISCUSSION

A. Vorticity without vorticity

It might appear surprising how the two degrees of freedom
contained in the wave function include vorticity. First of all,
vorticity is not associated with a new degree of freedom, in
contrast to CDM where vorticity is a degree of freedom that
cannot be constructed from density and velocity divergence
and moreover satisfies its own equation of motion. Second,
the coarse grained velocity uh = e

1
2�x

2�
{n r�}/nh, has some

trivial vorticity due to the involved coarse graining which can
be seen by rewriting the smoothing as

nhuh = nh exp
✓
�x

2 �rx
�!rx

◆
r�̄ , (55)

where �̄ = e
1
2�x

2�� is the coarse grained phase. Taylor ex-
panding r ⇥ uh to leading order in �x

2 and using that

r ⇥ (r�) = 0 (56)

we find

(r ⇥ uh)i = �
2
x

 
r

nh,i
nh
⇥r�̄,i

!
, (57)

suggesting that the vorticity is a purely smoothing related
byproduct in contrast to CDM where r⇥uc has a component

FIG. 10. Coarse grained vorticity. Upper panels are for �x =
0.001 ⇥ 20 Mpc= 0.02 Mpc, lower panels for �x = 0.0035 ⇥ 20 Mpc
= 0.07 Mpc. Left panels show the results of ColdDICE, right panels
those of the ScM. Overplotted on the right are the locations of the
vortices identified in Fig. 9.

that survives the limit �x ! 0 given by the above mentioned
vortical degree of freedom. However it turns out that the in-
nocent looking (56) is in fact not the whole story and there is
indeed a microscopic seed for vorticity in the ScM that sur-
vives the limit �x ! 0.

The right hand side of (56) does not vanish in general if the
phase has singular gradients r� which is known to generally
appear during time evolution [22]. If a closed curve C with
unit tangent l encloses a singularity,23 the circulation

1
2⇡~̃

˛
C
r� · dl = m (58)

is a non-zero integrer m [44, 59]. In that case the right hand
side of (56) consists of a sum of Dirac delta functions posi-
tioned at the singularities of the phase, which in two dimen-
sions is given by

r ⇥ (r�) = ẑ 2⇡ ~̃
NvortX

i

mi�D(xi) , (59)

with ẑ the unit vector perpendicular to the two dimensional
surface [59]. Thus, this contributes to r ⇥ uh even at zeroth

23 In two dimensions they are point-like whereas in three dimension they are
line-like and thus a network of vortex lines will form for d = 3. In one
dimension, although pointlike phase gradient singularities arise, as shown
in [22], they are not persistent in the sense that they appear only at isolated
points in time at which the phase jumps by 2⇡.
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