SEMICLASSICAL PATH(S) TO THE COSMIC WEB MAKING (DARK MATTER) WAVES

Cora Uhlemann

Cosmic Web Workshop KITP Santa Barbara, Jan 2023

recent arXiv:2206.11918 [OJA 5 (2022)] led by PhD Alex Gough

collaborators: Oliver Hahn, Michael Kopp, Cornelius Rampf & Mateja Gosenca

University

DARK MATTER MASS one of the least constrained physical parameters

DARK MATTER

80 orders of magnitude

C	feV	$M_{ m pl}$	M_{\odot} N	Aass
ht" DM	WIMP	Composite DM	Primordial BHs	

p Higgs eFig 1 from Ferreira '21

cold

wave vs. cold dark matter

WAVE DARK MATTER

Schive ++ Nature Phys. Lett '15

astrophysical imprints: Hui, Ostriker, Tremaine & Witten '17, Hui '21

COLD DARK MATTER

PHASE SPACE DYNAMICS

Vlasov-Poisson (collisionless Boltzmann, long range force)

nonlinear

3+3 dim

similar in plasma physics (gravity \rightarrow Coulomb)

$$\Delta V(\boldsymbol{x},t) \propto \int f(\boldsymbol{x},\boldsymbol{p},t) \,\mathrm{d}^3 p - 1$$

simple 'cold' initial conditions: flat sheet

LARGE-SCALE VIEW OF PHASE SPACE

COLD DARK MATTER

COLD DARK MATTER APPROXIMATIONS

NUMERICAL N PARTICLES

effective CDM particles

limited sampling

ANALYTICAL 2 FIELDS

1 COMPLEX WAVE FUNCTION wave dark matter

fluid density & velocity

> limited features

SEMICLASSICAL DYNAMICS

correspondence: classical \Rightarrow quantum

Schrödinger-Poisson equation

$$i\hbar \partial_t \psi(\boldsymbol{x},t) = \hat{H}\psi(\boldsymbol{x},t) \qquad \Delta V(\boldsymbol{x},t) \propto |\psi(\boldsymbol{x},t)|^2 - 1$$

fundamental for (ultra-)light scalar fields

mean field might not be full story: Kopp et al. '22, Eberhardt et al. '22

KEY IDEA

numerics idea: Widrow & Kaiser '93

$$\hbar \simeq rac{\hbar_{
m phys}}{m}$$
 small scale

multi-stream translates to

density oscillations

$$\psi \propto \sqrt{1+\delta} \exp[i\phi/\hbar]$$

phase jumps

10 WAVE NUMERICS

1D WAVE NUMERICS

SEMICLASSICAL DYNAMICS classical \rightleftharpoons quantum $f(\boldsymbol{x},\boldsymbol{p},t) \simeq f_{\hbar}[\psi(\boldsymbol{x},t)](\boldsymbol{p})$

 $\sigma_x \sigma_p \gtrsim \hbar/2$ + coarse-graining

multi-stream → bound structure CU, Kopp & Haugg PRD '14

2D: Kopp++ PRD '17

NUMERICAL N PARTICLES

ONE WAVEFUNCTION TO RULE THEM ALL?

ANALYTICAL 2 FIELDS

Li, Hui & Bryan 18: naive wave PT no good

APPROXIMATE: SHOOT PARTICLES

follow initial gravitational potential

$$\boldsymbol{v}(\boldsymbol{q},a) = -\boldsymbol{\nabla} \varphi_{g}^{\mathrm{i}}$$

$$\boldsymbol{x}(\boldsymbol{q},a) = \boldsymbol{q} - a\boldsymbol{\nabla}$$

 $a^{\mathrm{ini}}(\boldsymbol{q})$

 $abla arphi_g^{\mathrm{ini}}(oldsymbol{q})$

APPROXIMATE: SHOOT PARTICLES follow initial gravitational potential

 $\boldsymbol{v}(\boldsymbol{q},a) = -\boldsymbol{\nabla}\varphi_{q}^{\mathrm{ini}}(\boldsymbol{q})$

$$\boldsymbol{x}(\boldsymbol{q},a) = \boldsymbol{q} - a\boldsymbol{\nabla}$$

- **Coordinates & PT**
- **x**: 'standard' Eulerian (SPT)
- **q**: Lagrangian (LPT)

- $\nabla \varphi_q^{\mathrm{ini}}(\boldsymbol{q})$
- Zel'dovich 1D: exact before shell-crossing

2D & 3D: + tidal effects

FREE PROPAGATION

classical action

 $S_0(\boldsymbol{x}, \boldsymbol{q}, a) = \frac{1}{2}$

$$\frac{1}{2}(\boldsymbol{x}-\boldsymbol{q})\cdot \frac{\boldsymbol{x}-\boldsymbol{q}}{a}$$

background expansion

CU, Rampf, Gosenca & Hahn 18

TRANSLATE FREE PROPAGATION

transition amplitude

 $\psi_0(\boldsymbol{x}, a) = N \int d^3 q \, \mathrm{e}$

Schrödinger equation

 $i\hbar\partial_a\psi_0 = -\frac{\hbar^2}{\Omega}\nabla^2\psi_0$ **)**

$$\exp\left[\frac{i}{\hbar}S_0(\boldsymbol{x},\boldsymbol{q},a)\right]\psi_0^{\mathrm{ini}}(\boldsymbol{q})$$

Coles & Spencer 03 CU, Rampf, Gosenca & Hahn 18

≈ Zeldovich approximation turned Eulerian

EULERIAN

$\psi = \sqrt{\rho} \exp[i\phi_v/\hbar]$ density $\rho(\boldsymbol{x}) = |\psi(\boldsymbol{x})|^2$ velocity $\boldsymbol{v}(\boldsymbol{x}) = \frac{i\hbar}{2} \frac{\psi \nabla \bar{\psi} - \bar{\psi} \nabla \psi}{|\psi|^2} \stackrel{\blacktriangleright}{=} \nabla \phi_v$

+ velocity dispersion, ...

not necessarily potential

time

Amplitude: brightness Phase: colour Features

- Interference
- Regularised caustic

FREE WAVE EVOLUTION

UNWEAVING THE WAVEFUNCTION

OPTICS ANALOGY

Interference

Wave optics

What is interfering?

Berry, Nye, Wright `79

UNWEAVING THE WAVEFUNCTION

Based on propagator

• $\zeta(q; x, a)$ contains action & initial conditions

- *K*(*q*; *x*, *a*) transition amplitude
- \hbar small \rightarrow integrand oscillatory

Stationary Phase Approximation

q where $\zeta'(q) = 0$ dominate integral

STREAM WAVEFUNCTIONS

• ψ captures beyond perfect fluid!

Get effect of stream averaging without explicit dissection of streams!

NON-POTENTIAL VELOCITY

Velocity dispersion

$$\sigma = -\frac{\hbar}{4}\nabla^2 \ln \rho$$

- sourced by density zeros & phase jumps
- beyond perfect fluid in oscillatory ψ

$$\psi \approx \psi_{avg} \times \psi_{hidden}$$

Fluid part Osci

VELOCITY DISPERSION

illatory

DENSITY

2D PHASED WAVE EXAMPLE

 $1 + \delta(\boldsymbol{x}, a) = |\psi|^2$

a=0.044900

CU, Rampf, Gosenca & Hahn 18

VORTICITY from phase jumps $v = \nabla \phi_v$ but $\nabla \times v \neq 0$

20 PHASED WAVE EXAMPLE

VORTICITY

small scales

quantised

analog to Schrödinger-Poisson vortices 2D: Kopp++ '17, 3D: Hui++ '20

large scales

classical appearance

CU, Rampf, Gosenca & Hahn 18

A NEW LAYER OF LARGE-SCALE STRUCTURE

phase space high dimensional

particle-based resolution loss

perturbative fluid limited physics X

wave space full physics half dimensions

CONCLUSION: THE SKY FROM Y

hydro simulation initial conditions: Rampf, CU, Hahn '20 Hahn, Rampf, CU '20

Lyman- α forest: *Porqueres* ++ '20

map-level predictions cold dark matter small ħ/m wave dark matter

COMPLEXITY IN A WAVEFUNCTION

DIFFRACTION OPTICS

Cusp caustic from laser droplet diffraction Wikimedia: Dan Piponi

VORTICITY TRACKING

COSMIC WEB

Schrödinger's Smoke

Figure 1: Comparing experiment (dry ice vapor, top) with ISF simulation (middle), followed by a visualization of the underlying wave function ψ . Vorticity is concentrated within the green region.

SEMICLASSICAL DYNAMICS

correspondence: classical \Rightarrow quantum

$$\partial_t f_W = \left[\frac{p^2}{2a^2m} + mV \right]$$

KEY IDEA

 $\frac{2}{\hbar} \sin\left(\frac{\hbar}{2} (\overleftarrow{\nabla}_x \overrightarrow{\nabla}_p - \overleftarrow{\nabla}_p \overrightarrow{\nabla}_x)\right) f_W$ $\simeq \left(\overleftarrow{\nabla}_x \overrightarrow{\nabla}_p - \overleftarrow{\nabla}_p \overrightarrow{\nabla}_x\right)$

CU, Kopp, Haugg PRD '14

SEMICLASSICAL DYNAMICS

correspondence: classical \Rightarrow quantum

add coarse-graining

$$\bar{f}_W(\boldsymbol{x},\boldsymbol{p}) = \int \frac{d^3 \tilde{x} d^3 \tilde{p}}{(\pi \sigma_x \sigma_p)^3} \exp\left[-\frac{(\boldsymbol{x} - \tilde{\boldsymbol{x}})^2}{2\sigma_x^2} - \frac{(\boldsymbol{p} - \tilde{\boldsymbol{p}})^2}{2\sigma_p^2}\right] f_W(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{p}})$$

$$\sigma_x \sigma_p \gtrsim \hbar/2$$

similar to BBGKY hierarchy of n-particle distributions

KEY PROBLEM

1-particle distribution

CUMULANT HIERARCHY infinite & coupled

analogy: Gaussian is only PDF with a finite set of cumulants

KEY PROBLEM

shell-crossing

Pueblas & Scoccimarro `08

CUMULANT HIERARCHY infinite & coupled

$$\partial_t C^{(n)} \simeq \nabla \cdot C^{(n+1)} + \sum_{|S|=0}^n C^{(n+1)}$$

approximate closure $C^{(n\geq 2)} = F[C^{(0)}, C^{(1)}]$

linear functional F

$$C^{(n+2)} = -\frac{\hbar^2}{4}\nabla\nabla C$$

analogy: lognormal PDF higher cumulants given by lower ones

KEY IDEA

$(1-|S|) \cdot \nabla C^{(|S|)}$

CU JCAP '18

deformation quantisation? $\gamma(n)$ small parameter

INTERACTIVE PROPAGATION

phase space

CLASSICAL OBSERVABLES

PHASE-SPACE DISTRIBUTION

coarse-grained Wig

 $f_{\mathrm{W}}(\boldsymbol{x},\boldsymbol{p}) = \int \frac{\mathrm{d}^{3} x'}{(2\pi)^{3}} \exp\left[\frac{-\mathrm{i} x}{c}\right]$

phase-space info in wave function

ner
$$\bar{f}_W[\psi,\hbar\to 0]$$

$$\left[rac{\mathrm{i}m{p}\cdotm{x}'}{a^{3/2}}
ight]\psi(m{x}+rac{\hbar}{2}m{x}')\,ar{\psi}(m{x}-rac{\hbar}{2}m{x}')$$

LAGRANGIAN FLUID

compare $f_W[\psi, \hbar \to 0]$ to

 \rightarrow usual Lagrangian PT $v^{L}(q) = \dot{\xi}(q)$

 $f_{\rm fl}(\boldsymbol{x}, \boldsymbol{p}) = \int \mathrm{d}^3 q \, \delta_{\rm D}^{(3)} \left[\boldsymbol{x} - \boldsymbol{q} - \boldsymbol{\xi}(\boldsymbol{q}) \right] \, \delta_{\rm D}^{(3)} \left[\frac{\boldsymbol{p}}{a^{3/2}} - \boldsymbol{v}^{\rm L}(\boldsymbol{q}) \right]$ velocity displacement

LAGRANGIAN FLUID

velocity beyond $v^L(q) = \dot{\xi}(q)$

 $\boldsymbol{v}(\boldsymbol{q}) = -\boldsymbol{\nabla}\varphi_{\boldsymbol{a}}^{(\text{ini})} - a\boldsymbol{\nabla}V_{\text{eff}}^{(2)}$

vorticity conserver

VORTICITY CONSERVATION

Eulerian: $\nabla_x \times v = 0$

before shell-crossing

= () ossinc

VORTICITY

phase jumps \rightarrow vorticity

topological defects: rotons

$$\frac{1}{2\pi\hbar} \oint_{C(a)} \nabla \phi_{\mathbf{v}} \cdot \mathrm{d}\boldsymbol{x}$$

preserve Kelvin-Helmholtz invariant

$\psi = \sqrt{\rho} \exp[i\phi_v/\hbar]$ $v = \frac{i\hbar}{2} \frac{\psi \nabla \psi - \psi \nabla \psi}{|_{y/}|^2} = \nabla \phi_v$

VORTICITY

PHASED WAVE EXAMPLE

propagator PT

THE SKY FROM W

DARK MATTER + BARYONS: ICS

PPT initial conditions for Eulerian codes

evolve one Ψ for each component (valid for nondecaying modes)

Rampf, CU, Hahn '20 Hahn, Rampf, CU `20

density p

real space

redshift space

Porqueres ++ '20

THE SKY FROM W

ρ quasar flux F(ρ)

FUZZY DARK MATTER CONSTRAINTS

within the intergalactic medium at high redshifts

Lyman-alpha forest: light absorption by hydrogen gas

simulation & plot from Vid Irsic

FUZZY DARK MATTER CONSTRAINTS lower mass limit by Lyman-alpha forest

 $k \,[\mathrm{km}^{-1} \mathrm{s}]$ scale: large to small

credit: Irsic ++ '17

GRAVITATIONAL DYNAMICS

Perfect fluid perturbation theory

Continuity $a\partial_{\tau}\delta = -\nabla$

Bernoulli $a\partial_{\tau}\Delta\phi = -\dot{-}$

determine linear solutio & plug back in

$$\delta_n(\boldsymbol{k}) = \int \frac{\mathrm{d}^3 \boldsymbol{p}_1 \dots \mathrm{d}^3 \boldsymbol{p}_n}{(2\pi)^{3(n-1)}} \, \delta_\mathrm{D}(\boldsymbol{k} - \boldsymbol{k})$$

$$\nabla [(1+\delta)\nabla\phi]$$

$$\frac{\Delta}{2}(\nabla\phi)^2 - a^2\Delta V \propto -\delta$$

n
$$\delta(\tau, \mathbf{k}) = \sum_{n} a^{n}(\tau) \delta_{n}(\mathbf{k})$$

 $-\boldsymbol{p}_{1\dots n}$) $\boldsymbol{F}_n(\boldsymbol{p}_1,\dots,\boldsymbol{p}_n) \ \delta_1(\boldsymbol{p}_1)\dots\delta_1(\boldsymbol{p}_n)$

get recursion relations

GRAVITATIONAL DYNAMICS

Cumulant hierarchy

Schrödinger method

Schrödinger-Poisson equation

 $i\hbar \partial_t \psi(\boldsymbol{x},t) = \hat{H}\psi(\boldsymbol{x},t)$

$$f_W(\boldsymbol{x}, \boldsymbol{p}) = \int \frac{d^3 \tilde{x}}{(2\pi\hbar)^3} \exp\left[2\frac{i}{\hbar}\boldsymbol{p} \cdot \tilde{\boldsymbol{x}}\right]$$

Features

- same # degrees of freedom as fluid
- fluid model as limit $\hbar \to 0$
- no singularity
- nonzero higher cumulants

Problems

- not manifestly positive
- time evolution not quite like Vlasov

cure: add coarse-graining $\sigma_x \sigma_p \gtrsim \hbar/2$

 $\bar{f}_W(\boldsymbol{x}, \boldsymbol{p}) = \int \frac{d^3 \tilde{x} d^3 \tilde{p}}{(\pi \sigma_x \sigma_p)^3} \exp\left[-\frac{(\boldsymbol{x} - \tilde{\boldsymbol{x}})^2}{2\sigma_x^2} - \frac{d^3 \tilde{x} d^3 \tilde{p}}{2\sigma_x^2}\right]$

Schrödinger-Poisson inspires closure of cumulant hierarchy

Cora Uhlemann, DAMTP Cambridge

$$\Delta V(\boldsymbol{x},t) \propto \widetilde{|\psi(\boldsymbol{x},t)|^2} - 1$$

self-gravitating field

$$\psi(\boldsymbol{x}-\tilde{\boldsymbol{x}})\overline{\psi}(\boldsymbol{x}+\tilde{\boldsymbol{x}})$$

$$\psi = \sqrt{\rho} \exp(i\phi/\hbar)$$

 \hbar as free parameter

$$- \left. rac{(oldsymbol{p} - ilde{oldsymbol{p}})^2}{2\sigma_p^2}
ight] f_W(ilde{oldsymbol{x}}, ilde{oldsymbol{p}})$$

Quantal method: Lessons

Closing a cumulant hierarchy with finitely generated cumulants

$$G[\boldsymbol{J}] = \int \mathrm{d}^3 p \, \exp\left[i\boldsymbol{p} \cdot \boldsymbol{J}\right] f \,, \ C_{i_1 \cdots i_n}^{(n)} := (-i)^n \left. \frac{\partial^n \ln G[\boldsymbol{J}]}{\partial J_{i_1} \dots \partial J_{i_n}} \right|_{\boldsymbol{J}=0}$$

• cumulant generator = (linear) operators on fundamental functions $\ln G[\boldsymbol{J}] = \mathcal{O}_n(\boldsymbol{J}) \ln n + i\mathcal{O}_n(\boldsymbol{J})$

• Idea: make evolution for higher cumulants automatically fulfilled $\partial_t \ln G[\boldsymbol{J}, \boldsymbol{x}] = rac{i}{a^2 m} (\boldsymbol{\nabla}_J \cdot \boldsymbol{\nabla}_x \ln \boldsymbol{x})$

• given **initial conditions** & evolution for lower cumulants

$$\partial_t \ln n = \frac{-1}{a^2 m} \left[\nabla^2 \phi + \nabla \ln n \cdot \nabla \phi \right] \qquad \partial_t \phi = -\frac{1}{a^2 m} \left\{ \frac{1}{2} \left(\nabla \phi \right)^2 + \tilde{C}^{(2)} \right\} - mV$$

• Schrödinger: one wave function to rule them all

$$\ln G[\boldsymbol{J}] = \cosh\left(\frac{\hbar}{2}\boldsymbol{J}\cdot\boldsymbol{\nabla}\right)\ln\boldsymbol{n}(\boldsymbol{x}) + 2\frac{i}{\hbar}\sinh\left(\frac{\hbar}{2}\boldsymbol{J}\cdot\boldsymbol{\nabla}\right)\boldsymbol{\phi}(\boldsymbol{x})$$

Quantal methods for closure of classical cumulant hierarchies

Cora Uhlemann, DAMTP Cambridge

• Idea: finite # of fundamental functions rather than finite # of cumulants

$$\phi_{\phi}(oldsymbol{J})\phi$$

$$\operatorname{m} G + \nabla_J \operatorname{ln} G \cdot \nabla_x \operatorname{ln} G) - im J \cdot \nabla_x V$$

VORTICITY

small scales quantised

large scales classical

from Kopp++ PRD '17

MULTI-STREAM REGIME

Vlasov Schrödinger

