SEMICLASSICAL PATH(S) TO THE COSMIC WEB MAKING (DARK MATTER) WAVES

Cora Uhlemann
Newcastle

- University
recent arXiv:2206.11918 [OJA 5 (2022)] led by PhD Alex Gough
collaborators: Oliver Hahn, Michael Kopp, Cornelius Rampf \& Mateja Gosenca

DARK MATTER

DARK MATTER MASS

 one of the least constrained physical parameters80 orders of magnitude

Known particles:
thermal production:
hot

Limit
thermal relic
e^{-}
warm
p Higgs
cold

Fig 1 from Ferreira '21
wave vs. cold dark matter

2. WAVE DARK MATTER

Schive ++ Nature Phys. Lett `15

astrophysical imprints: Hui, Ostriker, Tremaine \& Witten '17, Hui '21

PhASE SPACE DYNAMICS

Vlasov-Poisson (collisionless Boltzmann, long range force)

similar in plasma physics (gravity \rightarrow Coulomb)
simple 'cold' initial conditions: flat sheet

LARGE-SCALE VIEW OF PHASE SPACE

COLD DARK MATTER APPROXIMATIONS

NUMERICAL
N PARTICLES

ANALYTICAL

2 FIELDS

effective CDM particles
limited sampling

1 COMPLEX WAVE FUNCTION

 wave dark matterlimited
features

SEMICLASSICAL DYNAMICS

correspondence: classical \rightleftarrows quantum

$$
\begin{array}{ll}
f(\boldsymbol{x}, \boldsymbol{p}, t) \simeq f_{\hbar}[\psi(\boldsymbol{x}, t)](\boldsymbol{p}) & \begin{array}{l}
\text { numerics idea: } \\
\text { Widrow \& Kaiser '93 } \\
3+3 \mathrm{dim}
\end{array} \\
3 \mathrm{dim} & \hbar \simeq \frac{\hbar_{\text {phys }}}{m} \text { small scale }
\end{array}
$$

Schrödinger-Poisson equation

$$
i \hbar \partial_{t} \psi(\boldsymbol{x}, t)=\hat{H} \psi(\boldsymbol{x}, t) \quad \Delta V(\boldsymbol{x}, t) \propto|\psi(\boldsymbol{x}, t)|^{2}-1
$$

fundamental for (ultra-)light scalar fields

multi-stream translates to

density oscillations

$\psi \propto \sqrt{1+\delta} \exp [i \phi / \hbar]$
phase jumps

SEMICLASSICAL DYNAMICS

classical \rightleftarrows quantum

$$
f(\boldsymbol{x}, \boldsymbol{p}, t) \simeq f_{\hbar}[\psi(\boldsymbol{x}, t)](\boldsymbol{p})
$$

+ coarse-graining $\quad \sigma_{x} \sigma_{p} \gtrsim \hbar / 2$

multi-stream

\rightarrow bound structure
CU, Kopp \& Haugg PRD '14
2D: Kopp++ PRD `17

NUMERICAL
N PARTICLES

ANALYTICAL

2 FIELDS

1 Wave Function

Li, Hui \& Bryan 18: naive wave PT

CLASSICAL DYNAMICS

APPROXIMATE: SHOOT PARTICLES

follow initial gravitational potential

$$
\begin{aligned}
& \boldsymbol{v}(\boldsymbol{q}, a)=-\boldsymbol{\nabla} \varphi_{g}^{\mathrm{ini}}(\boldsymbol{q}) \\
& \boldsymbol{x}(\boldsymbol{q}, a)=\boldsymbol{q}-a \boldsymbol{\nabla} \varphi_{g}^{\mathrm{ini}}(\boldsymbol{q})
\end{aligned}
$$

CLASSICAL DYNAMICS

APPROXIMATE: SHOOT PARTICLES

follow initial gravitational potential

$$
\begin{aligned}
& \boldsymbol{v}(\boldsymbol{q}, a)=-\boldsymbol{\nabla} \varphi_{g}^{\mathrm{ini}}(\boldsymbol{q}) \\
& \boldsymbol{x}(\boldsymbol{q}, a)=\boldsymbol{q}-a \boldsymbol{\nabla} \varphi_{g}^{\mathrm{ini}}(\boldsymbol{q})
\end{aligned}
$$

Zel'dovich 1D: exact before shell-crossing
Coordinates \& PT
x: 'standard' Eulerian (SPT)
2D \& 3D:

+ tidal effects
$\mathbf{q}:$ Lagrangian (LPT)

CLASSICAL DYNAMICS

FREE PROPAGATION

classical action

$$
\begin{aligned}
S_{0}(\boldsymbol{x}, \boldsymbol{q}, a)= & \frac{1}{2}(\boldsymbol{x}-\boldsymbol{q}) \cdot \frac{\boldsymbol{x}-\boldsymbol{q}}{a} \\
& \text { background expansion }
\end{aligned}
$$

CU, Rampf, Gosenca \& Hahn 18

SEMICLASSICAL DYNAMICS

TRANSLATE FREE PROPAGATION

transition amplitude

$$
\psi_{0}(\boldsymbol{x}, a)=N \int d^{3} q \exp \left[\frac{i}{\hbar} S_{0}(\boldsymbol{x}, \boldsymbol{q}, a)\right] \psi_{0}^{\mathrm{ini}}(\boldsymbol{q})
$$

Schrödinger equation

$$
i \hbar \partial_{a} \psi_{0}=-\frac{\hbar^{2}}{2} \nabla^{2} \psi_{0}
$$

Coles \& Spencer 03
CU, Rampf, Gosenca \& Hahn 18
§ Zeldovich approximation turned Eulerian

CLASSICAL OBSERVABLES

EULERIAN

density $\quad \rho(\boldsymbol{x})=|\psi(\boldsymbol{x})|^{2} \quad \psi=\sqrt{\rho} \exp \left[i \phi_{v} / \hbar\right]$
velocity $\quad \boldsymbol{v}(\boldsymbol{x})=\frac{i \hbar}{2} \frac{\psi \boldsymbol{\nabla} \bar{\psi}-\bar{\psi} \boldsymbol{\nabla} \psi}{|\psi|^{2}}=\nabla \phi_{v}$
not necessarily potential

+ velocity dispersion, ...

Amplitude: brightness
Phase: colour
Features

- Interference
- Regularised caustic

UNWEAVING THE WAVEFUNCTION

Gough \& Uhlemann 2022

OPTICS ANALOGY

UNWEAVING THE WAVEFUNCTION

Based on propagator

$$
\psi(x, a) \sim \int \mathrm{d} q \underbrace{K_{0}(q ; x, a) \psi^{(\mathrm{ini})}(q)}_{\exp \left[\frac{i}{\hbar} \zeta(q ; x, a)\right]}
$$

- $\zeta(q ; x, a)$ contains action \& initial conditions
- $K(q ; x, a)$ transition amplitude
- \hbar small \rightarrow integrand oscillatory

Stationary Phase Approximation

q where $\zeta^{\prime}(q)=0$ dominate integral

$$
q \text { wnete } \zeta(q) \text { - } 0 \text { commate megid }
$$

x

- recover classical multi-stream from interference

NON-POTENTIAL VELOCITY

- Phase jumps at zero density
- ψ captures beyond perfect fluid!

Get effect of stream averaging without explicit dissection of streams!

- Velocity dispersion

$$
\sigma=-\frac{\hbar}{4} \nabla^{2} \ln \rho
$$

- sourced by density zeros \& phase jumps
- beyond perfect fluid in oscillatory ψ

$$
\psi \approx \psi_{\mathrm{avg}} \times \psi_{\text {hidden }}
$$

Fluid part

Gough \& Uhlemann 2022

2D PHASED WAVE EXAMPLE

DENSITY

$$
1+\delta(\boldsymbol{x}, a)=|\psi|^{2}
$$

CU, Rampf, Gosenca \& Hahn 18

2D RHASED NAVE EXAMPLE

VORTICITY from phase jumps $\boldsymbol{v}=\nabla \phi_{v}$ but $\nabla \times \boldsymbol{v} \neq 0$

CU, Rampf, Gosenca \& Hahn 18

2D RHASED WAVE EXAMPLE

VORTICITY

small scales large scales

quantised
classical appearance
analog to Schrödinger-Poisson vortices
2D: Kopp++ '17, 3D: Hui++ '20

CU, Rampf, Gosenca \& Hahn 18

GONGLUSION: THE SKY FROM

A NEW LAYER OF LARGE-SCALE STRUCTURE

phase space high dimensional particle-based resolution loss
perturbative fluid limited physics \mathbf{X}

wave space

 full physics half dimensions
hydro simulation initial conditions:
Rampf, CU, Hahn '20
Hahn, Rampf, CU '20
Lyman- α forest: Porqueres ++ '20
map-level predictions cold dark matter † small \hbar / m
wave dark matter

COMPLEXITY IN A WAVEFUNCTION

DIffrAction Optics

Cusp caustic from laser droplet diffraction

Wikimedia: Dan Piponi

by Oliver Hahn

VORTICITY TRACKING

Figure 1: Comparing experiment (dry ice vapor, top) with ISF simu lation (middle), followed by a visualization of the underlying wave
function ψ. Vorticity is concentrated within the green region.

SEMICLASSICAL DYNAMICS

correspondence: classical \rightleftarrows quantum

$$
\begin{aligned}
& \underset{\substack{\text { 3+3 dim }}}{f(\boldsymbol{x}, \boldsymbol{p}, t)} \simeq f_{\hbar}[\psi(\boldsymbol{x}, t)](\boldsymbol{p}) \\
& \begin{aligned}
& \partial_{t} f_{W}=\left[\frac{\boldsymbol{p}^{2}}{2 a^{2} m}+m V\right] \\
& \simeq\left(\overleftarrow{\nabla}_{x} \vec{\nabla}_{p}-\overleftarrow{\nabla}_{p} \vec{\nabla}_{x}\right)
\end{aligned} \\
&
\end{aligned}
$$

CU, Kopp, Haugg PRD '14

SEMICLASSICAL DYNAMICS

correspondence: classical \rightleftarrows quantum

add coarse-graining $\sigma_{x} \sigma_{p} \gtrsim \hbar / 2$

$$
\bar{f}_{W}(\boldsymbol{x}, \boldsymbol{p})=\int \frac{d^{3} \tilde{x} d^{3} \tilde{p}}{\left(\pi \sigma_{x} \sigma_{p}\right)^{3}} \exp \left[-\frac{(\boldsymbol{x}-\tilde{\boldsymbol{x}})^{2}}{2 \sigma_{x}^{2}}-\frac{(\boldsymbol{p}-\tilde{\boldsymbol{p}})^{2}}{2 \sigma_{p}^{2}}\right] f_{W}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{p}})
$$

KEY PROBLEM

CUMULANT HIERARCHY

$$
C_{i_{1} \ldots i_{n}}^{(n)}(\boldsymbol{x}) \ni \underset{\mathrm{n}=0}{\left\{\int d^{3} p p_{i_{1}} \cdots p_{i_{m}} f(\boldsymbol{x}, \boldsymbol{p})\right\}_{m \leq n}}
$$

density, velocity, velocity dispersion, ...
$\partial_{t} C^{(n)} \simeq \nabla \cdot C^{(n+1)}+\sum_{|S|=0}^{n} C^{(n+1-|S|)} \cdot \nabla C^{(|S|)}$
similar to BBGKY hierarchy of n-particle distributions

CUMULANT HIERARCHY

 infinite \& coupled$$
\partial_{t} C^{(n)} \simeq \nabla \cdot C^{(n+1)}+\sum_{|S|=0}^{n} C^{(n+1-|S|)} \cdot \nabla C^{(|S|)}
$$

perfect fluid

$$
C^{(n \geq 2)} \neq 0
$$

shell-crossing
Pueblas \& Scoccimarro ` 08
analogy: Gaussian is only PDF with a finite set of cumulants

CUMULANT HIERARCHY

infinite \& coupled

$$
\partial_{t} C^{(n)} \simeq \nabla \cdot C^{(n+1)}+\sum_{|S|=0}^{n} C^{(n+1-|S|)} \cdot \nabla C^{(|S|)}
$$

approximate closure

$$
C^{(n \geq 2)}=F\left[C^{(0)}, C^{(1)}\right] \quad \text { cu JCAP '18 }
$$

linear functional F
deformation quantisation?
$C^{(n+2)}=-\frac{\hbar^{2}}{4} \nabla \nabla C^{(n) \quad \text { small parameter }}$
analogy: lognormal PDF higher cumulants given by lower ones

SEMICLASSICAL DYNAMICS

Interactive Propagation

PT or numerics

$$
\begin{aligned}
& i \hbar \partial_{a} \psi=-\frac{\hbar^{2}}{2} \nabla^{2} \psi+V_{\mathrm{eff}}^{\downarrow}(\boldsymbol{x}, a) \psi \\
& \text { propagator } \\
& \psi(\boldsymbol{x}, a)<\underbrace{}_{V_{\mathrm{eff}}(\boldsymbol{x}, a)}
\end{aligned}
$$

CLASSICAL OBSERVABLES

PhASE-SPACE DISTRIBUTION

coarse-grained Wigner $\bar{f}_{W}[\psi, \hbar \rightarrow 0]$
$f_{\mathrm{W}}(\boldsymbol{x}, \boldsymbol{p})=\int \frac{\mathrm{d}^{3} x^{\prime}}{(2 \pi)^{3}} \exp \left[\frac{-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{x}^{\prime}}{a^{3 / 2}}\right] \psi\left(\boldsymbol{x}+\frac{\hbar}{2} \boldsymbol{x}^{\prime}\right) \bar{\psi}\left(\boldsymbol{x}-\frac{\hbar}{2} \boldsymbol{x}^{\prime}\right)$
phase-space info in wave function

CLASSICAL OBSERVABLES

LAGRANGIAN FLUID

compare $\bar{f}_{W}[\psi, \hbar \rightarrow 0]$ to

$$
\begin{array}{r}
f_{\mathrm{fl}}(\boldsymbol{x}, \boldsymbol{p})=\int \mathrm{d}^{3} q \delta_{\mathrm{D}}^{(3)}[\boldsymbol{x}-\boldsymbol{q}-\boldsymbol{\xi}(\boldsymbol{q})] \delta_{\mathrm{D}}^{(3)}\left[\frac{\boldsymbol{p}}{a^{3 / 2}}-\boldsymbol{v}^{\mathrm{L}}(\boldsymbol{q})\right] \\
\text { displacement } \\
\text { velocity }
\end{array}
$$

\rightarrow usual Lagrangian PT $\boldsymbol{v}^{L}(\boldsymbol{q})=\dot{\boldsymbol{\xi}}(\boldsymbol{q})$

CLASSICAL OBSERVABIES

LAGRANGIAN FLUID

velocity beyond $\boldsymbol{v}^{L}(\boldsymbol{q})=\dot{\boldsymbol{\xi}}(\boldsymbol{q})$

$$
\begin{aligned}
\boldsymbol{v}(\boldsymbol{q})= & -\boldsymbol{\nabla} \varphi_{g}^{(\mathrm{ini})}-a \boldsymbol{\nabla} V_{\mathrm{eff}}^{(2)} \\
& +\frac{a^{2}}{2} \boldsymbol{\nabla} \nabla V_{\mathrm{eff}}^{(2)} \cdot \nabla \varphi_{g}^{(\mathrm{ini})}
\end{aligned}
$$

vorticity conserver

CLASSICAL OBSERVABLES

VORTICITY CONSERVATION

Eulerian: $\boldsymbol{\nabla}_{x} \times \boldsymbol{v}=0$
before shell-crossing

VORTICITY

phase jumps \rightarrow vorticity

$$
\psi=\sqrt{\rho} \exp \left[i \phi_{v} / \hbar\right] \quad \boldsymbol{v}=\frac{i \hbar}{2} \frac{\psi \boldsymbol{\nabla} \bar{\psi}-\bar{\psi} \boldsymbol{\nabla} \psi}{|\psi|^{2}}=\nabla \phi_{v}
$$

topological defects: rotons

$$
\frac{1}{2 \pi \hbar} \oint_{C(a)} \boldsymbol{\nabla} \phi_{\mathrm{v}} \cdot \mathrm{~d} \boldsymbol{x}=n_{+}-n_{-}=0
$$

preserve Kelvin-Helmholtz invariant

PHASED WAYE EXAMPLE

VORTICITY

DARK MATTER + BARYONS: ICS

PPT initial conditions for Eulerian codes
evolve one Ψ for each component (valid for nondecaying modes)

Rampf, CU, Hahn '20
Hahn, Rampf, CU `20

THE SKY FROM Ψ

density $\rho \quad$ quasar flux $F(\rho)$

Porqueres ++ '20

FUZZY DARK MATTER CONSTRAINTS

Lyman-alpha forest: light absorption by hydrogen gas within the intergalactic medium at high redshifts

simulation \& plot from Vid Irsic

Fuzzy Dark Matter Constraints

lower mass limit by Lyman-alpha forest

GRAVITATIONAL DYNAMICS

Perfect fluid perturbation theory

Continuity $a \partial_{\tau} \delta=-\nabla[(1+\delta) \nabla \phi]$
Bernoulli $\quad a \partial_{\tau} \Delta \phi=-\frac{\Delta}{2}(\nabla \phi)^{2}-a^{2} \Delta V \propto-\delta$
determine linear solution
\& plug back in

$$
\delta(\tau, \boldsymbol{k})=\sum_{n} a^{n}(\tau) \delta_{n}(\boldsymbol{k})
$$

$\delta_{n}(\boldsymbol{k})=\int \frac{\mathrm{d}^{3} \boldsymbol{p}_{1} \ldots \mathrm{~d}^{3} \boldsymbol{p}_{n}}{(2 \pi)^{3(n-1)}} \delta_{\mathrm{D}}\left(\boldsymbol{k}-\boldsymbol{p}_{1 \ldots n)}\right) F_{n}\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}\right) \delta_{1}\left(\boldsymbol{p}_{1}\right) \ldots \delta_{1}\left(\boldsymbol{p}_{n}\right)$
get recursion relations

GRAVITATIONAL DYNAMIGS

Cumulant hierarchy

Schrödinger-Poisson equation

$$
i \hbar \partial_{t} \psi(\boldsymbol{x}, t)=\hat{H} \psi(\boldsymbol{x}, t) \quad \Delta V(\boldsymbol{x}, t) \propto \overbrace{|\psi(\boldsymbol{x}, t)|^{2}}-1
$$

self-gravitating field

$$
f_{W}(\boldsymbol{x}, \boldsymbol{p})=\int \frac{d^{3} \tilde{x}}{(2 \pi \hbar)^{3}} \exp \left[2 \frac{i}{\hbar} \boldsymbol{p} \cdot \tilde{\boldsymbol{x}}\right] \psi(\boldsymbol{x}-\tilde{\boldsymbol{x}}) \bar{\psi}(\boldsymbol{x}+\tilde{\boldsymbol{x}})
$$

Features

- same \# degrees of freedom as fluid
- fluid model as limit $\hbar \rightarrow 0$
- no singularity
- nonzero higher cumulants

Problems

- not manifestly positive
- time evolution not quite like Vlasov
cure: add coarse-graining $\sigma_{x} \sigma_{p} \gtrsim \hbar / 2$

$$
\bar{f}_{W}(\boldsymbol{x}, \boldsymbol{p})=\int \frac{d^{3} \tilde{x} d^{3} \tilde{p}}{\left(\pi \sigma_{x} \sigma_{p}\right)^{3}} \exp \left[-\frac{(\boldsymbol{x}-\tilde{\boldsymbol{x}})^{2}}{2 \sigma_{x}^{2}}-\frac{(\boldsymbol{p}-\tilde{\boldsymbol{p}})^{2}}{2 \sigma_{p}^{2}}\right] f_{W}(\tilde{\boldsymbol{x}}, \tilde{\boldsymbol{p}})
$$

```
\psi=\sqrt{}{\rho}\operatorname{exp}(i\phi/\hbar)
```

\hbar as free parameter

Closing a cumulant hierarchy with finitely generated cumulants

- Idea: finite \# of fundamental functions rather than finite \# of cumulants

$$
G[\boldsymbol{J}]=\int \mathrm{d}^{3} p \quad \exp [i \boldsymbol{p} \cdot \boldsymbol{J}] f, \quad C_{i_{1} \cdots i_{n}}^{(n)}:=\left.(-i)^{n} \frac{\partial^{n} \ln G[\boldsymbol{J}]}{\partial J_{i_{1}} \ldots \partial J_{i_{n}}}\right|_{\boldsymbol{J}=0}
$$

- cumulant generator $=$ (linear) operators on fundamental functions

$$
\ln G[\boldsymbol{J}]=\mathcal{O}_{n}(\boldsymbol{J}) \ln n+i \mathcal{O}_{\phi}(\boldsymbol{J}) \phi
$$

- Idea: make evolution for higher cumulants automatically fulfilled

$$
\partial_{t} \ln G[\boldsymbol{J}, \boldsymbol{x}]=\frac{i}{a^{2} m}\left(\boldsymbol{\nabla}_{J} \cdot \boldsymbol{\nabla}_{x} \ln G+\boldsymbol{\nabla}_{J} \ln G \cdot \boldsymbol{\nabla}_{x} \ln G\right)-i m \boldsymbol{J} \cdot \boldsymbol{\nabla}_{x} V
$$

- given initial conditions \& evolution for lower cumulants

$$
\partial_{t} \ln n=\frac{-1}{a^{2} m}\left[\boldsymbol{\nabla}^{2} \phi+\boldsymbol{\nabla} \ln n \cdot \boldsymbol{\nabla} \phi\right] \quad \partial_{t} \phi=-\frac{1}{a^{2} m}\left\{\frac{1}{2}(\boldsymbol{\nabla} \phi)^{2}+\tilde{C}^{(2)}\right\}-m V
$$

- Schrödinger: one wave function to rule them all

$$
\ln G[\boldsymbol{J}]=\cosh \left(\frac{\hbar}{2} \boldsymbol{J} \cdot \boldsymbol{\nabla}\right) \ln n(\boldsymbol{x})+2 \frac{i}{\hbar} \sinh \left(\frac{\hbar}{2} \boldsymbol{J} \cdot \boldsymbol{\nabla}\right) \phi(\boldsymbol{x})
$$

VORTICITY

small scales quantised

large scales classical

