Learning about simulations in space and time

KITP–Cosmic Web

01/26/23 - slide 1

Learning about simulations in space and time
 A lopsided instability in dark-matter halos

BFE

- SSA
- Example
- Bar sim
- Spiral
- Seiche
- Review
- Weakly damped
- Linear theory
- Methods
- Shape Disk
- Last words

Two questions:

- 1. How to compare theoretical dynamical predictions with simulations?
- 2. How to find dynamics in simulations that you don't know about to start?

BFE

SSA

Example

Bar sim

Spiral

Seiche

Review

Weakly damped

Linear theory

Methods

Last words

Shape

Disk

Two questions:

- 1. How to compare theoretical dynamical predictions with simulations?
- 2. How to find dynamics in simulations that you don't know about to start?

A new approach to an answer:

- 1. Perform N-body simulations with a spectral method in space (expansion method or BFE)
- 2. Use the time series to perform a spectral analysis in time (mSSA)

BFE

SSA

Example

Bar sim

Spiral Seiche

Review

Weakly damped

Linear theory

Methods

Last words

Shape

Disk

Two questions:

- 1. How to compare theoretical dynamical predictions with simulations?
- 2. How to find dynamics in simulations that you don't know about to start?

A new approach to an answer:

- 1. Perform N-body simulations with a spectral method in space (expansion method or BFE)
- 2. Use the time series to perform a spectral analysis in time (mSSA)
- \Rightarrow Let the simulation speak for itself by identifying its own dynamics!

BFE

SSA

Example

Bar sim

Spiral

Seiche

Review

Weakly damped

Linear theory

Methods

Last words

Shape

Disk

Two questions:

- 1. How to compare theoretical dynamical predictions with simulations?
- 2. How to find dynamics in simulations that you don't know about to start?

A new approach to an answer:

- 1. Perform N-body simulations with a spectral method in space (expansion method or BFE)
- 2. Use the time series to perform a spectral analysis in time (mSSA)

Relevance to us @ Cosmic Web 2023

- 1. BFE+mSSA is a useful idea in many simulation contexts
- 2. DM halos couple strongly from the outside in affecting the disk
- 3. Features excited in the halo persist for a very long time

BFE SSA Example Bar sim

Motivation

Spiral

Seiche

Review

Weakly damped

Linear theory

Methods

Shape Disk

Last words

Construct a pair of functions (u_i^{lm}, d_i^{lm}) that satisfy Poisson $\nabla^2 u_i^{lm} = 4\pi G d_i^{lm}$ and are complete with the scalar product

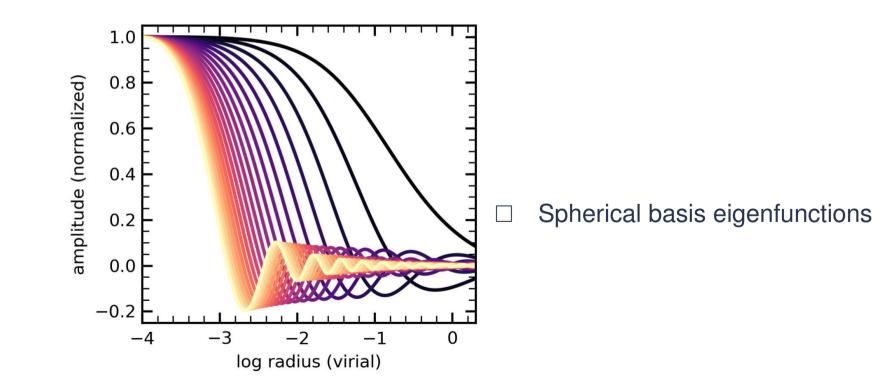
$$-\frac{1}{4\pi G}\int dr\,r^2 u_i^{lm\,*}(r)d_j^{lm}(r) = \begin{cases} 1 & \text{if}\;i=j\\ 0 & \text{otherwise.} \end{cases}$$

KITP–Cosmic Web

Motivation BFE SSA Example Bar sim Spiral Seiche Review Weakly damped Linear theory Methods Shape Disk Last words

Construct a pair of functions (u_i^{lm}, d_i^{lm}) that satisfy Poisson $\nabla^2 u_i^{lm} = 4\pi G d_i^{lm}$ and are complete with the scalar product

$$-\frac{1}{4\pi G}\int dr\,r^2 u_i^{lm\,*}(r)d_j^{lm}(r) = \begin{cases} 1 & \text{if } i=j\\ 0 & \text{otherwise.} \end{cases}$$



Motivation BFE SSA

Example

Bar sim

Spiral

Seiche

Review

Weakly damped

Linear theory

Methods

Shape

Disk

Last words

Construct a pair of functions (u_i^{lm}, d_i^{lm}) that satisfy Poisson $\nabla^2 u_i^{lm} = 4\pi G d_i^{lm}$ and are complete with the scalar product

$$-\frac{1}{4\pi G}\int dr\,r^2 u_i^{lm\,*}(r)d_j^{lm}(r) = \begin{cases} 1 & \text{if } i=j\\ 0 & \text{otherwise.} \end{cases}$$

The expansion coefficients are:

$$a_i^{lm} = -\frac{1}{4\pi G} \int_{\Omega} d\Omega Y_{lm}^*(\Omega) \int dr \, r^2 u_i^{lm \, *}(r) \rho(\mathbf{r})$$

For pure points, the estimator is:

$$\tilde{a}_{i}^{lm} = -\frac{1}{4\pi G} \sum_{k=1}^{N} m_{k} Y_{lm}^{*}(\theta_{k}, \phi_{k}) u_{i}^{lm*}(r_{k})$$

KITP–Cosmic Web

01/26/23 - slide 3

Expansion method (2)

Motivation BFE SSA Example Bar sim Spiral Seiche Review Weakly damped Linear theory Methods Shape Disk Last words

Estimates of the total density and potential are:

$$\tilde{\Phi}(\mathbf{r}) = \sum_{lm} Y_{lm}(\theta, \phi) \sum_{j} \tilde{a}_{j}^{lm}(t) u_{j}^{lm}(r), \qquad (1)$$

$$\tilde{\rho}(\mathbf{r}) = \sum_{lm} Y_{lm}(\theta, \phi) \sum_{j} \tilde{a}_{j}^{lm}(t) d_{j}^{lm}(r). \qquad (2)$$

- An N-body simulation provides time series $\mathbf{a}_{i}^{lm}(t)$
- Gravitational potential energy is: $W = -\frac{1}{2} \sum_{lmj} |a_j^{lm}|^2$
- Can construct bases which look like any galaxy you want
- Can use any one set to get another via Gram-Schmidt

Expansion method (2)

Motivation BFE SSA Example Bar sim Spiral Seiche Review Weakly damped Linear theory Methods Shape Disk Last words

Estimates of the total density and potential are:

$$\tilde{\Phi}(\mathbf{r}) = \sum_{lm} Y_{lm}(\theta, \phi) \sum_{j} \tilde{a}_{j}^{lm}(t) u_{j}^{lm}(r), \qquad (1$$
$$\tilde{\rho}(\mathbf{r}) = \sum_{lm} Y_{lm}(\theta, \phi) \sum_{j} \tilde{a}_{j}^{lm}(t) d_{j}^{lm}(r). \qquad (2$$

An N-body simulation provides time series $\mathbf{a}_{i}^{lm}(t)$

Singular Spectrum Analysis

[Golyandina & Zhigljavsky 2013]

BFE
SSA
Example
Bar sim
Spiral
Seiche
Review
Weakly damped
Linear theory
Methods
Shape
Disk
Last words

Motivation

How & why does this work?...

- Gravitational dynamics is a stochastic process that drives its evolution
- Describe the state of a galaxy using BFE: coefficients
- Karhunen–Loève theorem tells us that the temporal structure in coefficients can be represented by orthogonal functions

Singular Spectrum Analysis

[Golyandina & Zhigljavsky 2013]

BFE
SSA
Example
Bar sim
Spiral
Seiche
Review
Weakly damped
Linear theory
Methods
Shape
Disk

Last words

Motivation

How & why does this work?...

- Gravitational dynamics is a stochastic process that drives its evolution
- Describe the state of a galaxy using BFE: coefficients
- Karhunen–Loève theorem tells us that the temporal structure in coefficients can be represented by orthogonal functions

Simulations can be converted orthogonal functions in space and time!

Singular Spectrum Analysis

[Golyandina & Zhigljavsky 2013]

BFE
SSA
Example
Bar sim
Spiral
Seiche
Review
Weakly damped
Linear theory
Methods
Shape

Disk

Last words

Motivation

How & why does this work?...

- Gravitational dynamics is a stochastic process that drives its evolution
- Describe the state of a galaxy using BFE: coefficients
- Karhunen–Loève theorem tells us that the temporal structure in coefficients can be represented by orthogonal functions

Simulations can be converted orthogonal functions in space and time!

- Discover unknown dynamics and summarize known dynamics
- Enormous dimensional and data compression
 - \Box 10 TB of phase space \Longrightarrow 10 MB of functional data!

Some SSA details

Motivation

BFE

SSA

Example

Bar sim

Spiral Seiche

Review

Weakly damped

Linear theory

Methods

Last words

Shape

Disk

How to do it...

We embed the original time series into a sequence of lagged vectors:

$$A_i = (a_i, \dots, a_{i+L-1})^{\top}, \quad i = 1 \dots, K.$$

The trajectory matrix of the series A_N is

$$\mathbf{T} = [A_1 : \ldots : A_K]$$

$$= \begin{pmatrix} a_1 & a_2 & a_3 & \dots & a_K \\ a_2 & a_3 & a_4 & \dots & a_{K+1} \\ a_3 & a_4 & a_5 & \dots & a_{K+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_L & a_{L+1} & a_{L+2} & \dots & a_N \end{pmatrix}$$

The rows and columns of ${f T}$ are subseries of the original series

The details

(3)

Motivation
BFE
SSA
Example
Bar sim
Spiral
Seiche
Review
Weakly damped
Linear theory
Methods
Shape
Disk
Last words

We can form the <u>lag-covariance</u> matrix:

 $\mathbf{C} = \frac{1}{K} \mathbf{T}^\top \cdot \mathbf{T}.$

- Motivation
- BFE SSA
- Example
- Bar sim
- Spiral
- Seiche
- Review
- Weakly damped
- Linear theory
- Methods
- Shape
- Disk
- Last words

We can form the lag-covariance matrix:

$$\mathbf{C} = \frac{1}{K} \mathbf{T}^{\top} \cdot \mathbf{T}.$$
 (3)

The standard singular value decomposition (SVD) gives

$$\mathbf{\Lambda} = \mathbf{E}^{\top} \cdot \mathbf{C} \cdot \mathbf{E}$$
(4)

$$= \frac{1}{K} \left(\mathbf{E}^{\top} \cdot \mathbf{T} \right) \cdot \left(\mathbf{E}^{\top} \cdot \mathbf{T} \right)^{\top} = \frac{1}{K} \mathbf{P} \cdot \mathbf{P}^{\top}$$
(5)

The columns of \mathbf{P} are known as the principal components (uncorrelated, orthogonal by construction)

- Motivation
- BFE SSA
- Example
- Bar sim
- Spiral
- Seiche
- Review
- Weakly damped
- Linear theory
- Methods
- Shape
- Disk
- Last words

We can form the <u>lag-covariance</u> matrix:

$$\mathbf{C} = \frac{1}{K} \mathbf{T}^{\top} \cdot \mathbf{T}.$$
 (3)

The standard singular value decomposition (SVD) gives

$$\mathbf{\Lambda} = \mathbf{E}^{\top} \cdot \mathbf{C} \cdot \mathbf{E}$$
(4)

$$= \frac{1}{K} \left(\mathbf{E}^{\top} \cdot \mathbf{T} \right) \cdot \left(\mathbf{E}^{\top} \cdot \mathbf{T} \right)^{\top} = \frac{1}{K} \mathbf{P} \cdot \mathbf{P}^{\top}$$
(5)

- The columns of P are known as the principal components (uncorrelated, orthogonal by construction)
- Project the principle components back to the original basis and then diagonally average the result.

$$\tilde{\mathbf{T}}_k = \mathbf{P} \cdot \mathbf{E}^k \to \{\tilde{a}_j\}$$

KITP–Cosmic Web

Gaussian function w = 5, N = 100, L = 20

Time series is a Gaussian centered at t = 20 with width $\Delta t = 5$

BFE

SSA

Example

Bar sim

Spiral

Seiche

Review

Weakly damped

Linear theory

Methods

Shape Disk

Last words

Gaussian function w = 5, N = 100, L = 20

Time series is a Gaussian centered at t = 20 with width $\Delta t = 5$ Implications:

The trajectory matrix is banded

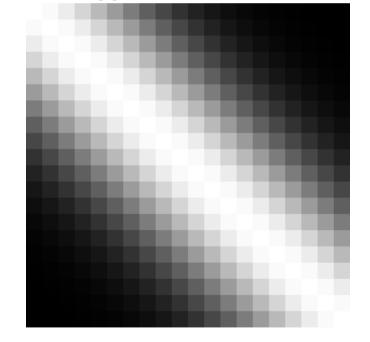
N	N	oti	va	ati	on

- BFE
- SSA
- Example
- Bar sim
- Spiral
- Seiche
- Review
- Weakly damped
- Linear theory
- Methods
- Shape
- Disk Last words

Gaussian function w = 5, N = 100, L = 20

```
Time series is a Gaussian centered at t = 20 with width \Delta t = 5 Implications:
```

- The trajectory matrix is banded
- The lagged covariance matrix is banded, diagonal



BFE

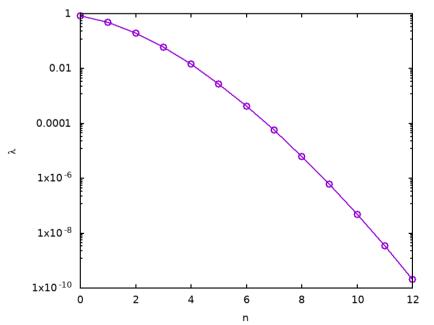
Motivation

- SSA
- Example
- Bar sim
- Spiral
- Seiche
- Review
- Weakly damped
- Linear theory
- Methods
- Shape
- Disk Last words

Gaussian function w = 5, N = 100, L = 20

```
Time series is a Gaussian centered at t = 20 with width \Delta t = 5 Implications:
```

- The trajectory matrix is banded
- The lagged covariance matrix is banded, diagonal
- Rapidly decreasing eigenvalues

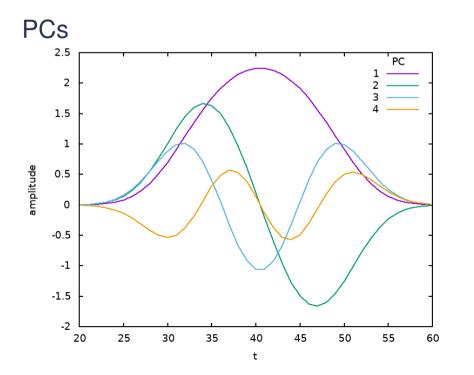


- Motivation
- BFE
- SSA
- Example
- Bar sim
- Spiral
- Seiche
- Review
- Weakly damped
- Linear theory
- Methods
- Shape
- Disk Last words

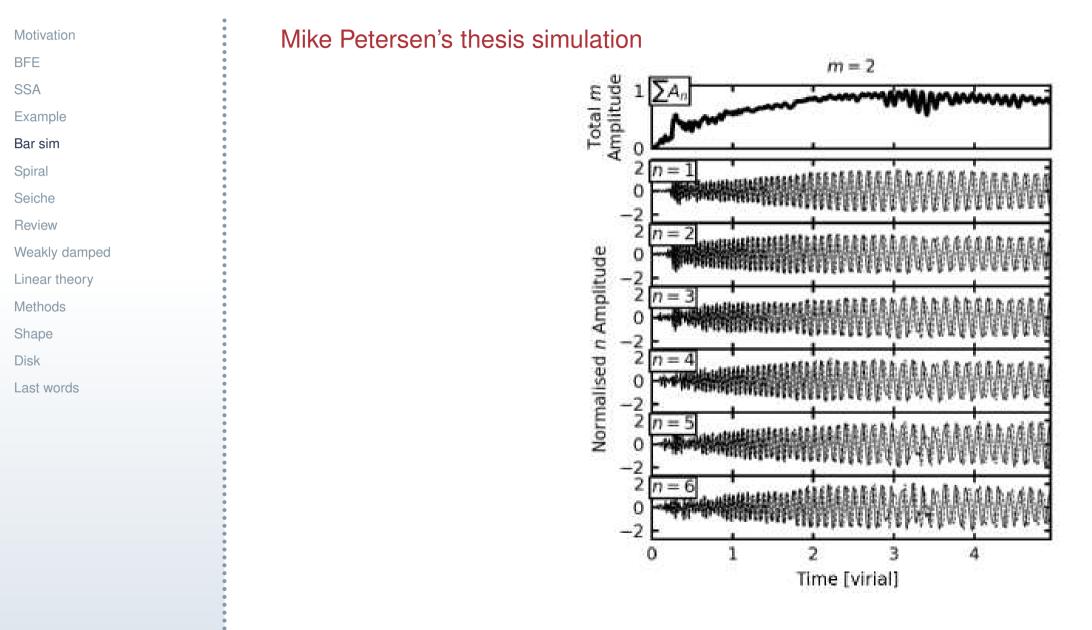
Gaussian function w = 5, N = 100, L = 20

```
Time series is a Gaussian centered at t = 20 with width \Delta t = 5 Implications:
```

- The trajectory matrix is banded
- The lagged covariance matrix is banded, diagonal
- Rapidly decreasing eigenvalues

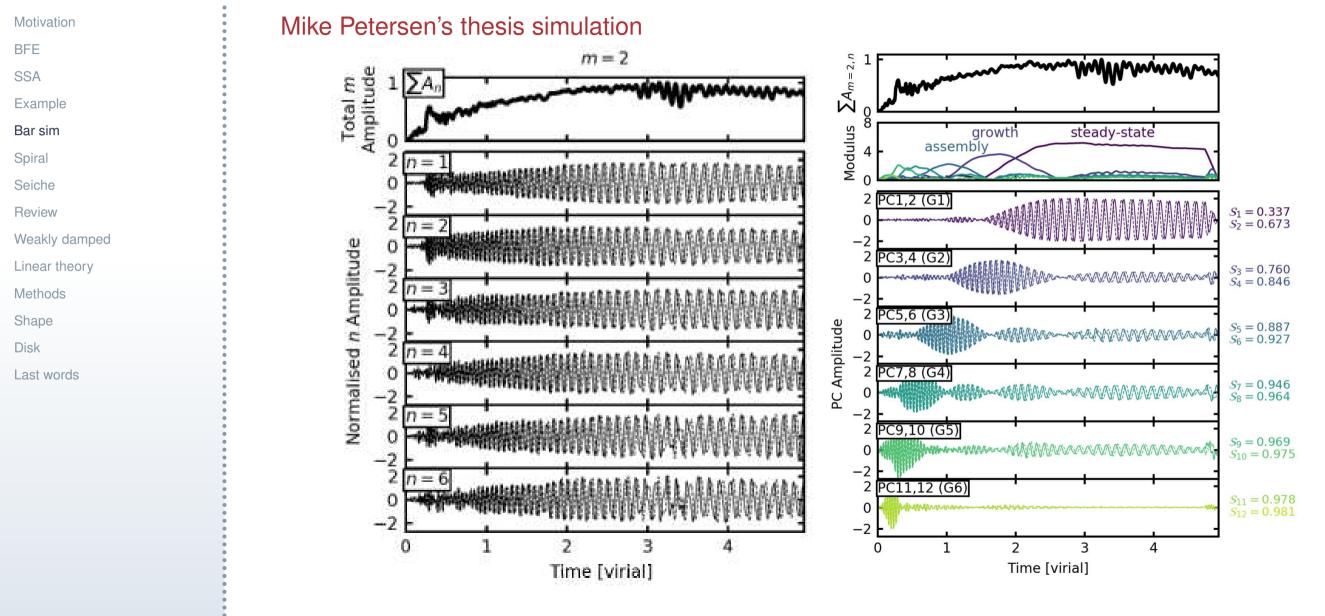


Application of MSSA to simulation with bar



KITP–Cosmic Web

Application of MSSA to simulation with bar

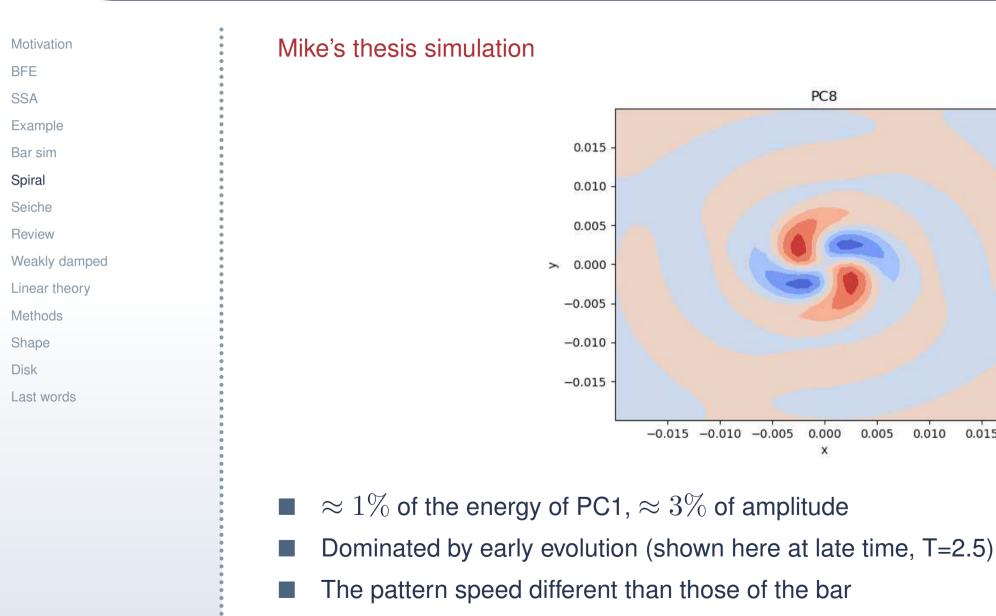


KITP–Cosmic Web

Amplitude of first 6 PC groups

01/26/23 - slide 9

Spiral arm PC



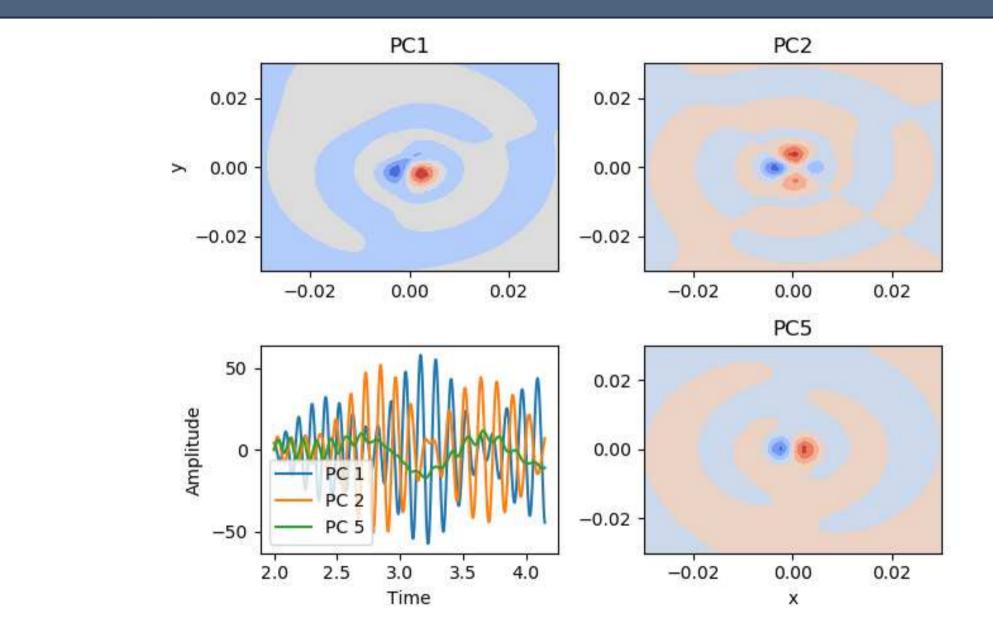
Non-steady owing to the quasi-periodic excitation and damping

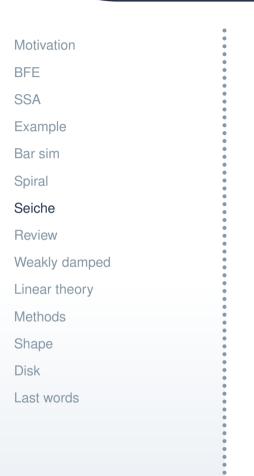
0.010

0.015

01/26/23 - slide 10

m=1 modes





Quick review: instabilities in spheres

Motivation

BFE SSA

Example

Bar sim

Spiral

Seiche

Review

Weakly damped

Linear theory

Methods

Shape

Disk

Last words

1. Global functional: f(E) only where $\rho(r) = \int d^3v f(E)$

• Stable for f(E), df(E)/dE < 0

[Antonov (1962, 1973), Goodman (1988)]

2. Dispersion relations: find self-similar collective modes $\propto e^{(i\Omega+\gamma)t}$

Radial orbit instability (ROI)

[Palmer & Papaloizou 1987, Saha 1991, Weinberg 1991, Saha 1992,...see B&T for more]

• Weakly-damped $\gamma < 0$

 \Box l = 1 seiche mode

[Weinberg 1994, Heggie et al. 2020, Hamilton 2021, Fouvry & Prunet, 2022]

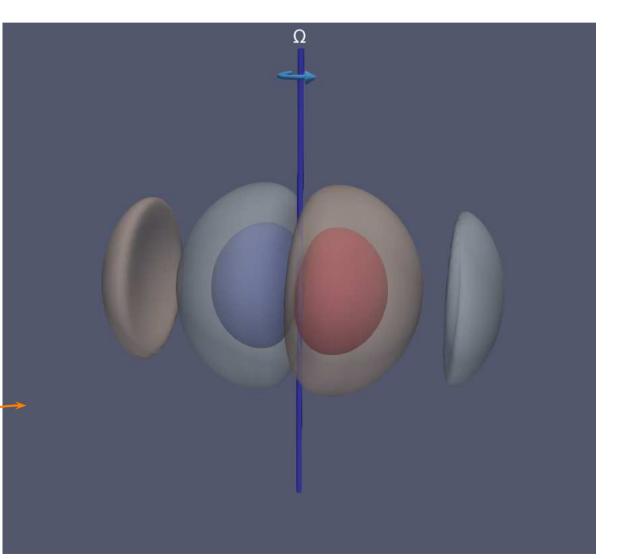
KITP–Cosmic Web

01/26/23 – slide 12

Weakly damped

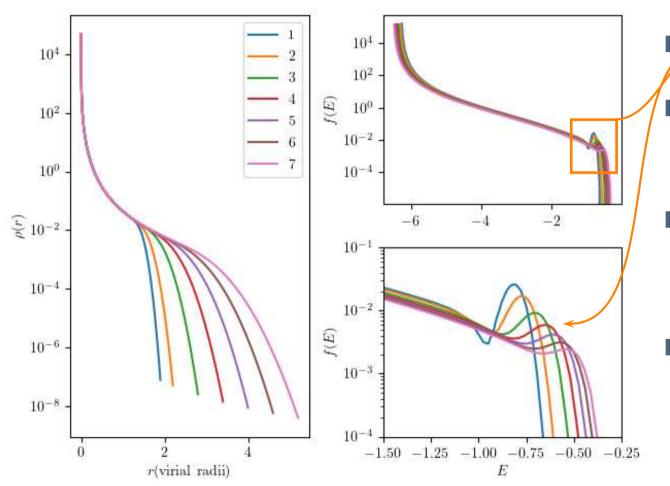
How/why do damped modes work?

- Response correlates apocenter positions
- Pattern speed is very slow: $\Omega \ll \frac{v_c}{r}$
- Couples only to orbits in outskirts
- Damps or grows depending on $\partial f/\partial \mathbf{I}$
- For many finite models: loses angular momentum <u>slowly</u>



Perturbation theory____

Tweak the NFW profile by smooth truncation

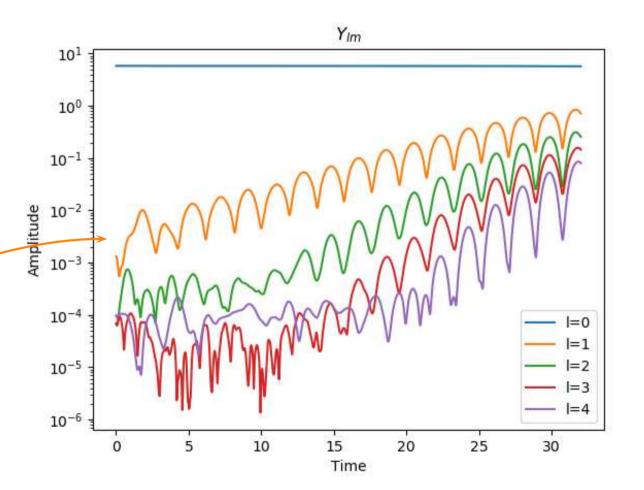


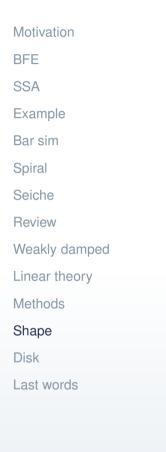
- Causes an inflection in DF
- Dispersion relation: 'bump on tail' converts damped to growing mode
- Mode in Hernquist profile: damps
 - Too little mass in outskirts
- Mode in truncated isothermal: grows
 - Heavy outskirts

Methods

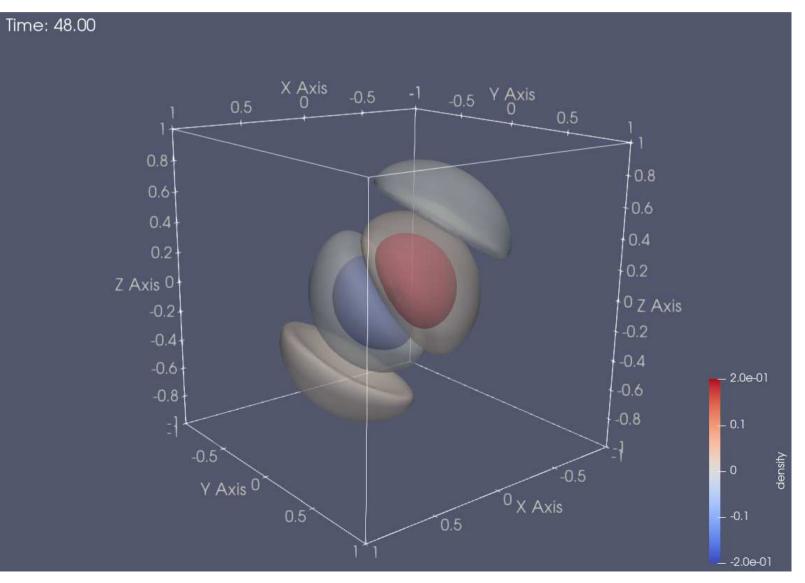
N-body simulations for insight

- N-body simulations using EXP, N = 20,000,000[Petersen et al. 2022]
 - □ Biorthogonal expansion Poisson solver, GPU
 - □ Public release with Python bindings soon with mSSA
- Spectral analysis of the coefficients time series (M-SSA)
 [Weinberg & Petersen 2021, Johnson et al. 2023]
- Exponential growth of l = 1 ____
- Same behavior with Gadget-2
- Linear instability verified by response theory

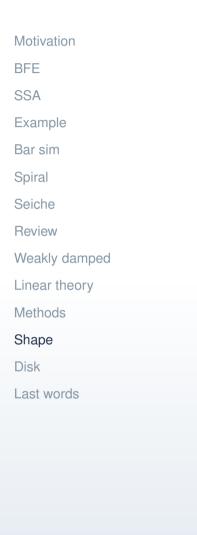




Mode reconstruction

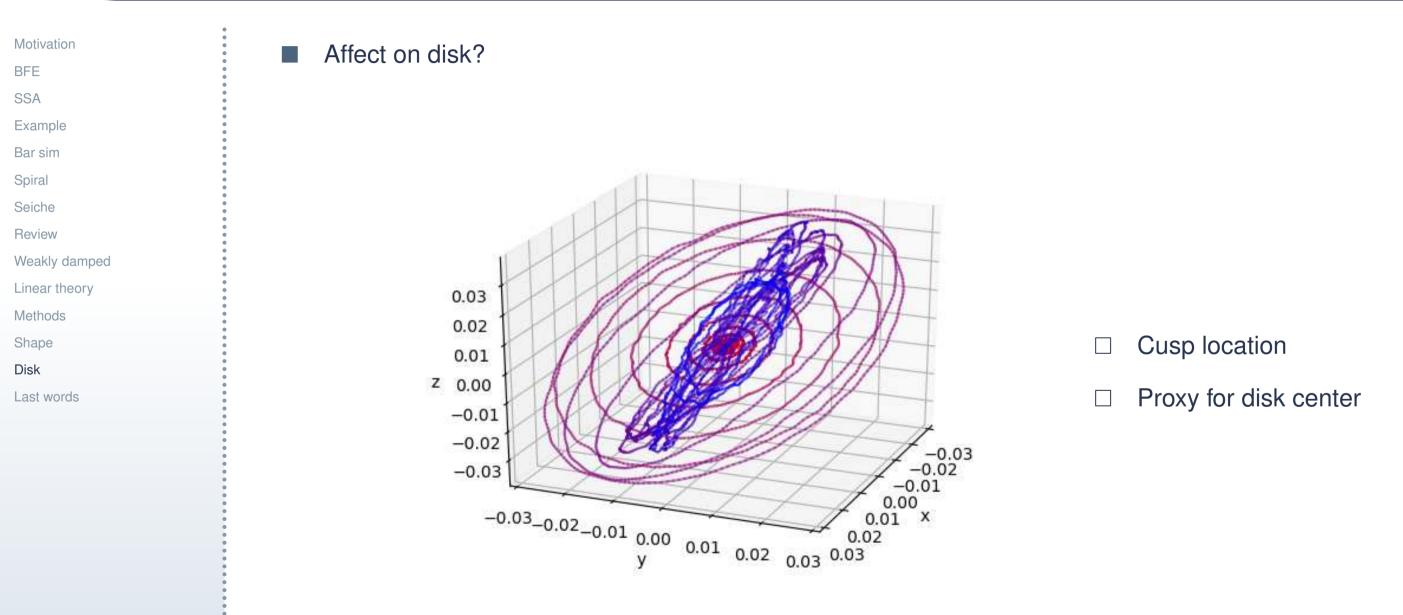


KITP–Cosmic Web

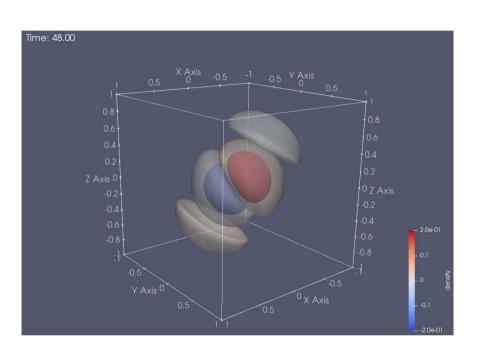


Mode reconstruction

KITP–Cosmic Web







Take-aways

- $\bullet \quad l = 1 \text{ analog of radial-orbit instability}$
- Radial angle becomes bunched
- Eccentric orbits feed the main mode
- 1-orbit fit: low L, 16% of halo mass
- \blacksquare l = 1 is important even when damped

Motivation BFE SSA Example Bar sim Bar sim Spiral Seiche Review Weakly damped Uinear theory Methods Shape Disk

Last words

- DM profiles can have unstable l = 1 modes
 - Outer halo profile matters!
 - □ Confirmed by linear response theory (arXiv:2209.06846)
- Character of the mode
 - l = 1 analog of the radial orbit instability
 - Orbits become bunched in radial phase
- Observational signatures
 - □ Persistent dipole distortions in DM (seen in photometry!)
 - □ May be excited by minor mergers, outer halo features, filaments(?)