
KITP–Cosmic Web 01/26/23 – slide 1

Learning about simulations in space and time

Martin D. Weinberg

UMass Astronomy

mdw@umass.edu

January 26, 2023



KITP–Cosmic Web 01/26/23 – slide 1

1. Learning about simulations in space and time

2. A lopsided instability in dark-matter halos

Martin D. Weinberg

UMass Astronomy

mdw@umass.edu

January 26, 2023



Motivation

Motivation

BFE

SSA

Example

Bar sim

Spiral

Seiche

Review

Weakly damped

Linear theory

Methods

Shape

Disk

Last words

KITP–Cosmic Web 01/26/23 – slide 2

Two questions:

1. How to compare theoretical dynamical predictions with simulations?

2. How to find dynamics in simulations that you don’t know about to start?
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Two questions:

1. How to compare theoretical dynamical predictions with simulations?

2. How to find dynamics in simulations that you don’t know about to start?

A new approach to an answer:

1. Perform N-body simulations with a spectral method in space (expansion method or BFE)

2. Use the time series to perform a spectral analysis in time (mSSA)
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Two questions:

1. How to compare theoretical dynamical predictions with simulations?

2. How to find dynamics in simulations that you don’t know about to start?

A new approach to an answer:

1. Perform N-body simulations with a spectral method in space (expansion method or BFE)

2. Use the time series to perform a spectral analysis in time (mSSA)

⇒ Let the simulation speak for itself by identifying its own dynamics!
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Two questions:

1. How to compare theoretical dynamical predictions with simulations?

2. How to find dynamics in simulations that you don’t know about to start?

A new approach to an answer:

1. Perform N-body simulations with a spectral method in space (expansion method or BFE)

2. Use the time series to perform a spectral analysis in time (mSSA)

Relevance to us @ Cosmic Web 2023

1. BFE+mSSA is a useful idea in many simulation contexts

2. DM halos couple strongly from the outside in affecting the disk

3. Features excited in the halo persist for a very long time
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� Construct a pair of functions (ulmi , dlmi ) that satisfy Poisson ∇2ulmi = 4πGdlmi and are

complete with the scalar product

−
1

4πG

∫

dr r2ulm ∗

i (r)dlmj (r) =

{

1 if i = j

0 otherwise.
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� Construct a pair of functions (ulmi , dlmi ) that satisfy Poisson ∇2ulmi = 4πGdlmi and are

complete with the scalar product

−
1

4πG

∫

dr r2ulm ∗

i (r)dlmj (r) =

{

1 if i = j

0 otherwise.

� Spherical basis eigenfunctions
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� Construct a pair of functions (ulmi , dlmi ) that satisfy Poisson ∇2ulmi = 4πGdlmi and are

complete with the scalar product

−
1

4πG

∫

dr r2ulm ∗

i (r)dlmj (r) =

{

1 if i = j

0 otherwise.

� The expansion coefficients are:

almi = −
1

4πG

∫

Ω

dΩY ∗

lm(Ω)

∫

dr r2ulm ∗

i (r)ρ(r)

� For pure points, the estimator is:

ãlmi = −
1

4πG

N
∑

k=1

mkY
∗

lm(θk, φk)u
lm ∗

i (rk)
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� Estimates of the total density and potential are:

Φ̃(r) =
∑

lm

Ylm(θ, φ)
∑

j

ãlmj (t)ulmj (r), (1)

ρ̃(r) =
∑

lm

Ylm(θ, φ)
∑

j

ãlmj (t)dlmj (r). (2)

� An N-body simulation provides time series almj (t)

� Gravitational potential energy is: W = −1

2

∑

lmj |a
lm
j |2

� Can construct bases which look like any galaxy you want

� Can use any one set to get another via Gram-Schmidt
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� Estimates of the total density and potential are:

Φ̃(r) =
∑

lm

Ylm(θ, φ)
∑

j

ãlmj (t)ulmj (r), (1)

ρ̃(r) =
∑

lm

Ylm(θ, φ)
∑

j

ãlmj (t)dlmj (r). (2)

� An N-body simulation provides time series almj (t)

� Gravitational potential energy is: 1
∑

lm 2
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[Golyandina & Zhigljavsky 2013]

How & why does this work?. . .
� Gravitational dynamics is a stochastic process that drives its evolution

� Describe the state of a galaxy using BFE: coefficients

� Karhunen–Loève theorem tells us that the temporal structure in coefficients can be

represented by orthogonal functions
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[Golyandina & Zhigljavsky 2013]

How & why does this work?. . .
� Gravitational dynamics is a stochastic process that drives its evolution

� Describe the state of a galaxy using BFE: coefficients

� Karhunen–Loève theorem tells us that the temporal structure in coefficients can be

represented by orthogonal functions

Simulations can be converted orthogonal functions in space
and time!
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[Golyandina & Zhigljavsky 2013]

How & why does this work?. . .
� Gravitational dynamics is a stochastic process that drives its evolution

� Describe the state of a galaxy using BFE: coefficients

� Karhunen–Loève theorem tells us that the temporal structure in coefficients can be

represented by orthogonal functions

Simulations can be converted orthogonal functions in space
and time!

� Discover unknown dynamics and summarize known dynamics

� Enormous dimensional and data compression

� 10 TB of phase space =⇒ 10 MB of functional data!
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How to do it. . .
We embed the original time series into a sequence of lagged vectors:

Ai = (ai, . . . , ai+L−1)
⊤, i = 1 . . . ,K.

The trajectory matrix of the series AN is

T = [A1 : . . . : AK ]

=















a1 a2 a3 . . . aK
a2 a3 a4 . . . aK+1

a3 a4 a5 . . . aK+2

...
...

...
. . .

...

aL aL+1 aL+2 . . . aN















.

The rows and columns of T are subseries of the original series
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� We can form the lag-covariance matrix:

C =
1

K
T

⊤ ·T. (3)
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� We can form the lag-covariance matrix:

C =
1

K
T

⊤ ·T. (3)

� The standard singular value decomposition (SVD) gives

Λ = E
⊤ ·C ·E (4)

=
1

K

(

E
⊤ ·T

)

·
(

E
⊤ ·T

)⊤

=
1

K
P ·P⊤

(5)

� The columns of P are known as the principal components (uncorrelated, orthogonal by

construction)
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� We can form the lag-covariance matrix:

C =
1

K
T

⊤ ·T. (3)

� The standard singular value decomposition (SVD) gives

Λ = E
⊤ ·C ·E (4)

=
1

K

(

E
⊤ ·T

)

·
(

E
⊤ ·T

)⊤

=
1

K
P ·P⊤

(5)

� The columns of P are known as the principal components (uncorrelated, orthogonal by

construction)

� Project the principle components back to the original basis and then diagonally average the

result.

T̃k = P ·Ek → {ãj}
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Gaussian function w = 5, N = 100, L = 20

Time series is a Gaussian centered at t = 20 with width ∆t = 5
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Gaussian function w = 5, N = 100, L = 20

Time series is a Gaussian centered at t = 20 with width ∆t = 5 Implications:

� The trajectory matrix is banded
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Gaussian function w = 5, N = 100, L = 20

Time series is a Gaussian centered at t = 20 with width ∆t = 5 Implications:

� The trajectory matrix is banded

� The lagged covariance matrix is banded, diagonal
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Gaussian function w = 5, N = 100, L = 20

Time series is a Gaussian centered at t = 20 with width ∆t = 5 Implications:

� The trajectory matrix is banded

� The lagged covariance matrix is banded, diagonal

� Rapidly decreasing eigenvalues
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Gaussian function w = 5, N = 100, L = 20

Time series is a Gaussian centered at t = 20 with width ∆t = 5 Implications:

� The trajectory matrix is banded

� The lagged covariance matrix is banded, diagonal

� Rapidly decreasing eigenvalues

� PCs
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Mike Petersen’s thesis simulation
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Mike Petersen’s thesis simulation

� Amplitude of first 6 PC groups
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Mike’s thesis simulation

� ≈ 1% of the energy of PC1, ≈ 3% of amplitude

� Dominated by early evolution (shown here at late time, T=2.5)

� The pattern speed different than those of the bar

� Non-steady owing to the quasi-periodic excitation and damping
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1. Global functional: f(E) only where ρ(r) =
∫

d3vf(E)

� Stable for f(E), df(E)/dE < 0
[Antonov (1962, 1973), Goodman (1988)]

2. Dispersion relations: find self-similar collective modes ∝ e(iΩ+γ)t

� Instabilities γ > 0 for f(E, J)

� Radial orbit instability (ROI)

[Palmer & Papaloizou 1987, Saha 1991, Weinberg 1991, Saha 1992,. . . see B&T for more]

� Weakly-damped γ < 0

� l = 1 seiche mode

[Weinberg 1994, Heggie et al. 2020, Hamilton 2021, Fouvry & Prunet, 2022]
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How/why do damped modes work?

� Response correlates apocenter positions

� Pattern speed is very slow: Ω ≪ vc
r

� Couples only to orbits in outskirts

� Damps or grows depending on ∂f/∂I

� For many finite models: loses angular

momentum slowly

Perturbation theory



Dispersion relation in NFW halos
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Tweak the NFW profile by smooth truncation

� Causes an inflection in DF

� Dispersion relation: ‘bump on tail’ converts

damped to growing mode

� Mode in Hernquist profile: damps

� Too little mass in outskirts

� Mode in truncated isothermal: grows

� Heavy outskirts



Methods

KITP–Cosmic Web 01/26/23 – slide 15

N-body simulations for insight

� N-body simulations using EXP, N = 20, 000, 000
[Petersen et al. 2022]

� Biorthogonal expansion Poisson solver, GPU

� Public release with Python bindings soon with mSSA

� Spectral analysis of the coefficients time series (M-SSA)

[Weinberg & Petersen 2021, Johnson et al. 2023]

� Exponential growth of l = 1

� Same behavior with Gadget-2

� Linear instability verified by response theory
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� Mode reconstruction
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� Mode reconstruction
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� Affect on disk?

� Cusp location

� Proxy for disk center
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Take-aways

� l = 1 analog of radial-orbit instability

� Radial angle becomes bunched

� Eccentric orbits feed the main mode

� 1-orbit fit: low L, 16% of halo mass

� l = 1 is important even when damped
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� DM profiles can have unstable l = 1 modes

� Outer halo profile matters!

� Confirmed by linear response theory (arXiv:2209.06846)

� Character of the mode

� l = 1 analog of the radial orbit instability

� Orbits become bunched in radial phase

� Observational signatures

� Persistent dipole distortions in DM (seen in photometry!)

� May be excited by minor mergers, outer halo features, filaments(?)


	Motivation
	Expansion method/BFE
	Expansion method (2)
	Singular Spectrum Analysis
	Some SSA details
	The details
	Blip
	Application of MSSA to simulation with bar
	Spiral arm PC
	m=1 modes
	Quick review: instabilities in spheres
	Weakly damped
	Dispersion relation in NFW halos
	Methods
	What is this mode?
	What is this mode?
	What is this mode?
	Last words

	anm0: 
	0.99: 
	0.98: 
	0.97: 
	0.96: 
	0.95: 
	0.94: 
	0.93: 
	0.92: 
	0.91: 
	0.90: 
	0.89: 
	0.88: 
	0.87: 
	0.86: 
	0.85: 
	0.84: 
	0.83: 
	0.82: 
	0.81: 
	0.80: 
	0.79: 
	0.78: 
	0.77: 
	0.76: 
	0.75: 
	0.74: 
	0.73: 
	0.72: 
	0.71: 
	0.70: 
	0.69: 
	0.68: 
	0.67: 
	0.66: 
	0.65: 
	0.64: 
	0.63: 
	0.62: 
	0.61: 
	0.60: 
	0.59: 
	0.58: 
	0.57: 
	0.56: 
	0.55: 
	0.54: 
	0.53: 
	0.52: 
	0.51: 
	0.50: 
	0.49: 
	0.48: 
	0.47: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


