Photonic gauge field as emerged from dynamic modulation: recent advances

Shanhui Fan
Ginzton Laboratory and Department of Electrical Engineering Stanford University

http://www.stanford.edu/~shanhui/

Outline

- Dynamic modulation approach for an effective magnetic field for photons: a brief review
- Novel gauge potential effects
- Negative refraction
- Gauge-potential waveguides
- Dynamic localization in three dimension
- Beyond rotating-wave approximation
- Resonator-free implementation of photonic gauge potential

Electron on a lattice

Electron hopping on a tight-binding lattice

Single unit cell

Magnetic field manifests in terms of a non-reciprocal round-trip phase as an electron hops along the edge of a unit cell.

Gauge field for photon: dynamic modulation approach

$$
H={ }_{A} \sum_{i} a_{i}^{+} a_{i}+{ }_{B} \sum_{i} b_{i}^{+} b_{i}+V \cos \left(t+{ }_{i j}\right) \sum_{\langle i j\rangle}\left(a_{i}^{+} b_{j}+b_{j}^{+} a_{i}\right)
$$

K. Fang, Z. Yu and S. Fan, Nature Photonics 6, 782 (2012).

See also M. Hafezi et al, Nature Physics 7, 907 (2011); R. O. Umucallar and I. Carusotto, Physical Review A 84, 043804 (2011).

With rotating wave approximation
$H={ }_{A} \sum_{i} a_{i}^{+} a_{i}+{ }_{B} \sum_{i} b_{i}^{+} b_{i}$
$+V \cos \left(t+{ }_{i j}\right) \sum_{\langle i j\rangle}\left(a_{i}^{+} b_{j}+b_{j}^{+} a_{i}\right)$
$H={ }_{\langle i j\rangle}\left(V e^{i{ }_{i j}} c_{i}^{+} c_{j}+V e^{i_{i j}} c_{j}^{+} c_{i}\right)$

$V \cos (t+)$

$$
d l \not \mathbb{A}_{i j}={ }_{i j}
$$

Uniform effective magnetic field

$$
B=0
$$

$$
B \quad 0
$$

Dynamically induced one-way edge mode

2020 resonator lattice
One-way propagation

K. Fang, Z. Yu and S. Fan, Nature Photonics 6, 782 (2012).

Outline

- Dynamic modulation approach for an effective magnetic field for photons: a brief review
- Novel gauge potential effects
- Negative refraction
- Gauge-potential waveguides
- Dynamic localization in three dimension
- Beyond rotating-wave approximation
- Resonator-free implementation of photonic gauge potential

Gauge field for photon: dynamic modulation approach

$$
H={ }_{A} \sum_{i} a_{i}^{+} a_{i}+{ }_{B} \sum_{i} b_{i}^{+} b_{i}+V \cos \left(t+{ }_{i j}\right) \sum_{\langle i j\rangle}\left(a_{i}^{+} b_{j}+b_{j}^{+} a_{i}\right)
$$

K. Fang, Z. Yu and S. Fan, Nature Photonics 6, 782 (2012).

The effect of a constant gauge potential

For electrons $\quad(e=\hbar=1)$

$$
H=\frac{1}{2 m}(i \nabla)^{2}+V \quad H=\frac{1}{2 m}(i \nabla \quad A)^{2}+V
$$

In general, a constant gauge potential shifts the wavevector

$$
\begin{aligned}
& i \nabla \rightarrow i \nabla A \\
& (k) \rightarrow \quad\left(\begin{array}{ll}
k & A
\end{array}\right)
\end{aligned}
$$

A constant gauge potential shifts the constant frequency contour

Gauge field induced negative refraction

K. Fang, S. Fan, Physical Review Letters 111, 203901 (2013).

Gauge field induced total internal reflection

K. Fang, S. Fan, Physical Review Letters 111, 203901 (2013).

A single-interface four-port circulator

K. Fang, S. Fan, Physical Review Letters 111, 203901 (2013).

Gauge-field waveguide for photons

- Total Internal Reflection occurs only for forward going waves.
Q. Lin and S. Fan, Physical Review X 4, 031031 (2014).

A novel one-way waveguide

Waveguide mode exists only in the positive k_{y} region

Gauge-field waveguide in dynamic resonator lattice

Cladding
$A=0$

Core
A 0

Gauge field for photon: dynamic modulation approach

$$
H={ }_{A} \sum_{i} a_{i}^{+} a_{i}+{ }_{B} \sum_{i} b_{i}^{+} b_{i}+V \cos \left(t+{ }_{i j}\right) \sum_{\langle i j\rangle}\left(a_{i}^{+} b_{j}+b_{j}^{+} a_{i}\right)
$$

K. Fang, Z. Yu and S. Fan, Nature Photonics 6, 782 (2012).

A time-dependent gauge field

$$
H={ }_{A} \sum_{i} a_{i}^{+} a_{i}+{ }_{B} \sum_{i} b_{i}^{+} b_{i}+V \cos \left(t+{ }_{i j}(t)\right) \sum_{\langle i j\rangle}\left(a_{i}^{+} b_{j}+b_{j}^{+} a_{i}\right)
$$

- Make the modulation phase itself time-dependent

$$
(t)=\cos \left({ }_{M} t\right) \sim A(t)
$$

- Since the modulation phase is a gauge potential, this should generate an effective electric field

$$
\frac{A}{t} \sim E
$$

Effective electric field from a gauge transformation

From a spatially periodic Hamiltonian:

$$
H={ }_{A} \sum_{i} a_{i}^{+} a_{i}+{ }_{B} \sum_{i} b_{i}^{+} b_{i}+V \cos \left(t+{ }_{i j}(t)\right) \sum_{\langle i j\rangle}\left(a_{i}^{+} b_{j}+b_{j}^{+} a_{i}\right)
$$

Within rotating wave approximation, and through a local gauge transformation, one can obtain (in one-dimension as an example):

$$
H={ }_{\langle m n\rangle} \frac{V}{2}\left(c_{m}^{+} c_{n}+c_{n}^{+} c_{m}\right) \quad{ }_{n}^{n \times{ }_{M} \sin \left({ }_{M} t\right) c_{n}^{+} c_{n}}
$$

Position-dependent resonant frequency
L. Yuan and S. Fan, Physical Review Letters 114, 243901 (2015)

Dynamic localization: a simple picture

$$
t_{1}
$$

Every Floquet eigenstate is localized

Proposed in semiconductor physics:
D. H. Dunlap and V. M. Kenkre, PRB 34, 3525 (1886); M. Holthaus PRL 69, 351 (1992) Studied and demonstrated in optics using waveguide array as an analogy:
A. Szameit et al, Nature Physics 5, 271 (2009).

A 3d lattice with a modulated hopping phase

Dynamic localization in three dimension

Without phase modulation

With phase modulation

Outline

- Dynamic modulation approach for an effective magnetic field for photons: a brief review
- Novel gauge potential effects
- Negative refraction
- Gauge-potential waveguides
- Dynamic localization in three dimension
- Beyond rotating-wave approximation
- Resonator-free implementation of photonic gauge potential

With rotating wave approximation
$H={ }_{A} \sum_{i} a_{i}^{+} a_{i}+{ }_{B} \sum_{i} b_{i}^{+} b_{i}$
$+V \cos \left(t+{ }_{i j}\right) \sum_{\langle i j\rangle}\left(a_{i}^{+} b_{j}+b_{j}^{+} a_{i}\right)$
$H={ }_{\langle i j\rangle}\left(V e^{i{ }_{i j}} c_{i}^{+} c_{j}+V e^{i_{i j}} c_{j}^{+} c_{i}\right)$

$V \cos (t+)$

$$
d l \not \mathbb{A}_{i j}={ }_{i j}
$$

Ultra-strong coupling naturally occur in optical systems

Standard electro-optically modulator on silicon

Refractive index modulation strength $\frac{n}{n} 10^{4}$
Coupling strength $\quad V \sim \frac{n}{n} \quad 0 \sim 10 \quad 100 \mathrm{GHz}$
Modulation frequency $\sim 10100 \mathrm{GHz}$

With standard electro-optic modulation, one is quite likely to be in the ultra-strong coupling regime

Floquet analysis without rotating wave approximation

$$
H={ }_{A} \sum_{i} a_{i}^{+} a_{i}+{ }_{B} \sum_{i} b_{i}^{+} b_{i}+V \cos \left(t+{ }_{i j}\right) \sum_{\langle i j\rangle}\left(a_{i}^{+} b_{j}+b_{j}^{+} a_{i}\right)
$$

Weak coupling regime

$\tilde{H}_{\text {RWA }}$
Full Hamiltonian with $\mathrm{V}=0.02 \Omega$

The full Hamiltonian has the same band-structure as the RWA Hamiltonian in the weak-coupling regime

From weak to ultra-strong coupling regime

Robustness to absorption loss in the ultra-strong coupling regime

$$
V=0.02
$$

$$
V=0.5
$$

Add a damping term for each resonator
L. Yuan and S. Fan, Physical Review A (2015, submitted).

Outline

- Dynamic modulation approach for an effective magnetic field for photons: a brief review
- Novel gauge potential effects
- Negative refraction
- Gauge-potential waveguides
- Dynamic localization in three dimension
- Beyond rotating-wave approximation
- Resonator-free implementation of photonic gauge potential

Photonic transition

Uniform modulation along z-direction $=\cos (t+)$ Air

Downward and upper-ward transition acquires a phase difference

K. Fang, Z. Yu and S. Fan, Physical Review Letters 108, 153901 (2012).

Experimental demonstration of photonic AB effect

Mixer provides the modulation

K. Fang, Z. Yu, and S. Fan, Phys. Rev. B Rapid Communications 87, 060301 (2013).

A direction dependent phase for photons

Filter \square
Mixer \square
$+2$
$\cos \binom{$ (}{$t+1} \cos \left(t+c_{2}\right)$
Phase shifter

Non-reciprocal oscillation as a function of modulation phase

30dB contrast From 8-12MHz

AB Interferometer from Photon-Phonon Interaction

Local oscillator (50MHz)

13dB forward-backward contrast
E. Li, B. Eggleton, K. Fang and S. Fan, Nature Communications 5, 3225 (2014).

AB interferometer on a silicon platform

L. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson, Nature Photonics 8, 701 (2014).

Direction-dependent phase shifter

Gauge field for photon: dynamic modulation approach

$$
H={ }_{A} \sum_{i} a_{i}^{+} a_{i}+{ }_{B} \sum_{i} b_{i}^{+} b_{i}+V \cos \left(t+{ }_{i j}\right) \sum_{\langle i j\rangle}\left(a_{i}^{+} b_{j}+b_{j}^{+} a_{i}\right)
$$

K. Fang, Z. Yu and S. Fan, Nature Photonics 6, 782 (2012).

See also M. Hafezi et al, Nature Physics 7, 907 (2011); R. O. Umucallar and I. Carusotto, Physical Review A 84, 043804 (2011).

Resonator-free implementation of effective magnetic field for photons

Direction-dependent phase shifter

Four-port symmetric waveguide junction

Q. Lin and S. Fan, New Journal of Physics 17, 075008 (2015).

Waveguide network

Dirac dispersion relation

Upper band

Lower band

Feigenbaum and Atwater, PRL 104, 147402 (2010).

Waveguide-network with directional dependent phase shifter on the waveguide

Reciprocal waveguide network

Zero effective magnetic field

Non-reciprocal waveguide network

An effective magnetic field for photons

One-way edge state

Four-port symmetric waveguide network

Energy conservation

$$
t^{2}+4 r^{2}=1
$$

The property of the network depends on t

Effective magnetic field for massless and massive particles
$t=0.5$

$\mathrm{t}=0.4$

Summary

Acknowledging:
Dr. Kejie Fang, Prof. Zongfu Yu, Dr. Luqi Yuan, Qian Lin
Prof. Michal Lipson
Dr. Enbang Li, Prof. Ben Eggleton

Dynamic modulation breaks time-reversal symmetry

Note that

$$
(t)=\cos (t+) \neq \quad(t)
$$

Gauge potential is equivalent to a direction-dependent phase

Consider electron interacting with a magnetic field B

$$
B=\nabla \times A
$$

Contrast with Conventional Waveguide

n_{1}

