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Numerical results: compressibility
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into account states resonant with the drive, we construct
from Eq. (2) the eigenstates of the Hamiltonian (1) (for
vanishing drive amplitude, i.e., f ¼ 0) with energies that
are integer multiples of εFB and project the Lindblad
equation on this subspace. Apart from the single-particle
states in Eq. (2), these states are products of nonoverlap-
ping plaquettes, e.g., the two-particle states jψ2i ∼
jΛ1ijΛ3i; jΛ1ijΛ4i;… with energy 2εFB, the three-particle
states jψ3i ∼ jΛ1ijΛ3ijΛ5i;… with energy 3εFB, etc. (for
further details see the SM [51]). The energetically highest
lying state is the density wave jΨdwi ¼

Qnmax
j¼1 jΛ2j−1i with

energy εdw ¼ nmaxεFB and particle number nmax ¼
ðN þ 1Þ=2, i.e., filling per lattice site νdw ¼ nmax=
ð3NÞ ¼ 1=6þOð1=NÞ. This special ladder of flat band
states with degeneracies dn ¼ ð2nmax−n

n Þ, where n is the
particle number of each state, is shown in Fig. 2(b) for
N ¼ 13 unit cells. All eigenstates with n > nmax belong
to dispersive bands and are gapped from the flat band
ladder due to the nonlinearity induced by the light-matter
coupling g.
Because of the coherent drive with ωD ¼ εFB, we expect

states belonging to the flat band ladder to mostly contribute
to the NESS at small and intermediate drive strength. In
Fig. 3 we show the average excitation number per lattice
site hνi (for a formal definition, see the caption of Fig. 3) as
a function of pump strength f=κ. At weak pump f ≪ κ, the
results of the projected model (solid blue line) agree with
the analytical expression hνi ≈ ð4f2=κ2Þ½1þ ð4J2 þ
κ2=4Þ=g2& (straight solid line), which is obtained from a
perturbative calculation of the steady state to leading order
in f=κ. At stronger pump, however, the system saturates at
a filling hνi ≈ νdw=2 ≈ 1=12, resulting in an extended
plateau centered around f ∼ κ. This plateau can be inter-
preted as an incompressible state of photons with
∂hνi=∂f ≈ 0, as we now explain in more detail. The height
of the plateau is largely independent of g and J and
determined mostly by the geometry of the lattice. This
can be understood by looking at the excitation number
distribution pn of finding n excitations in the lattice, shown
in Fig. 3(c). At weak pumping the distribution is peaked at
low excitation numbers and shifts to larger n for increasing
pump strength. At strong pumping it saturates and resem-
bles approximately the degeneracies dn shown in Fig. 2(b);
i.e., all states are almost equally occupied similar to a
two-level system saturating halfway between ground and
excited state [62]. The saturated average excitation number
is thus calculated as n̄ ≈ ð

Pnmax
n¼0 ndnÞ=ð

Pnmax
n¼0 dnÞ ¼

ð1 − 1=
ffiffiffi
5

p
ÞðN=2Þ, corresponding to roughly half the

density-wave filling ν̄ ¼ n̄=ð3NÞ ≈ νdw=2 [horizontal
dashed line in Fig. 3(a)]. The incompressible state thus
originates from an unconventional photon blockade on a
frustrated lattice arising from a saturation of the flat band
ladder shown in Fig. 2(b).
We confirm this picture by numerical simulations

employing an open system version of the iTEBD algorithm

[59,60] (for technical details, see SM [51]). In Fig. 3(a) the
projected model agrees with the exact numerics (diamonds)
well into the plateau, thus verifying the incompressible
state of photons, where fluctuations of the excitation
number are reduced [see Fig. 3(b)]. For an even stronger
pump (f ≫ κ), the dispersive bands start to contribute to
the NESS, leading to a destruction of the incompressible
state. This is also signaled by an increasing occupation of
the A cavities (squares). In this regime, the projected model
becomes invalid and the full numerics very costly as the
local Hilbert space cutoff needs to be increased substan-
tially. The interesting details of this crossover are the
subject of future work.
We now investigate the spatial order of the steady state

by studying the second-order coherence function (density-
density correlator) of the B sites, i.e., gð2ÞijB ¼ hb†i b

†
jbibji=

hb†i biihb
†
jbji. Figure 4 shows the spatial correlations of the

central B site (i ¼ 0) with its neighbors as calculated with
iTEBD. At weak and intermediate pump strength f=κ, we

FIG. 3 (color online). (a) Excitation number hνi ¼
P

XhνXi,
with νX ¼ nX=ð3NÞ, nX ¼

P
jx

†
jxj (X ¼ A; B;Q and

xj ¼ aj; bj; σ−j ) in the steady state as a function of pump strength
f=κ. Shown are results obtained from projection of the density
matrix on the flat band eigenspace for a system with N ¼ 13 unit
cells and open boundary conditions (solid line) and from iTEBD
simulations of the infinite system at zero detuning δQB ¼ 0 (blue
symbols) and finite detuning δQB ¼ J (circles). The plateau at
hνi ≈ ν̄ ≈ 1=12 is associated with a suppression of number
fluctuations ~K ¼ ½hð

P
XnXÞ2i − ð

P
XhnXiÞ2&=

P
XhnXi, as

shown in (b). The plateau is extended for the difference hνi −
hνAi (asterisks), but almost vanishes in the dispersive case
(circles). (c) Probability pn of finding n excitations in the lattice
as calculated within the flat band model for the pump strengths
marked with arrows in (a). Other parameters are g=J ¼ 1,
δAB=J ¼ 0.5, κ=J ¼ 0.05.
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find local (j ¼ 0) as well as nearest-neighbor (j ¼ "1)
antibunching, which represent a signature of photon block-
ade and incompressibility, i.e., the resistance of the system
to accept simultaneously two pump photons entering the
chain either on the same or on neighboring plaquettes
(which share a qubit, see Fig. 1). Thus, if a photon is
present at a B site of the chain, every other B site is less
occupied due to effective photon-photon interactions result-
ing in polaritonic density-wave-like order. At larger dis-
tances, density-wave order manifests itself in correlations
alternating between bunching (gð2Þ0ð2jÞB > 1) and antibunch-

ing (gð2Þ0ð2jþ1ÞB < 1) with a period doubling of two unit cells,
leading to an incipient crystalline state of light. This can be
interpreted as the nonequilibrium counterpart of a charge
density wave appearing in the ground state of an electronic
or atomic system with a flat lowest-energy band, e.g., in a
sawtooth or kagome lattice [32].
In a regular one-dimensional Jaynes-Cummings array

interactions vanish when g ≪ J [8]. Interestingly, for the
flat band the converse is true, as the ratio g=J determines
the polaritonic nature of the plaquette states, which are
qubitlike and thus strongly interacting when g ≪ J [see
Eq. (2)]. This remarkable effect determines the spatial
extent of the density-wave correlations. As shown in Fig. 5,
the correlation length shrinks when the flat band becomes
photonlike (g ≫ J), while it grows steeply in the opposite
limit (g ≪ J). On the technical level, the projection on the
flat band (see SM [51]) modifies the drive strength

according to f=κ → ðf=κÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2J2=g2

p
, thus effectively

increasing the drive strength when g=J decreases. This
entails a larger contribution of the high-energy density-
wave state jΨdwi (with infinite correlation length) to the
NESS. At the same time, the gap to the other bands closes
as g=J → 0, leading to a destruction of the photon block-
ade. Consequently, we find the strongest antibunching for
the fully mixed polaritonic case when g ∼

ffiffiffi
2

p
J.

Finally, we show that the signatures of geometric
frustration, incompressibility and crystalline order, vanish
when the flat band becomes dispersive, i.e., when δQB ≠ 0
(the drive stays resonant with the top of the band). For
δQB ¼ J [compare with the dashed lines in Fig. 2(a)], we
observe in Figs. 3(a) and 4(b) that the plateau as well as the
density-wave-like correlations completely disappear. The
latter are replaced by a broad and rather featureless
antibunching dip in Fig. 4(b). Indeed, the correlation length
of the density-wave oscillations drops quickly from its
maximum flat band value to roughly one unit cell (see inset
of Fig. 4).
In summary, we have shown that geometric frustration in

a photonic lattice pushes the system towards an incom-
pressible state of light characterized by short-ranged
crystalline order with period doubling. We have proposed
the simplest model of a frustrated quasi-1D lattice based on
a circuit QED architecture realizable with state-of-the-art
technology and easily extensible to two dimensions, e.g., to
study topological effects. Avariant suitable for a realization
of our proposal based on semiconductor micropillar arrays
[17,38] is described in the Supplemental Material [51] and
has recently been realized experimentally [63]. The onset of
long-range correlations motivates another interesting ques-
tion for future work, i.e., whether supersolid behavior of
light (coexistence of superfluidity and density-wave order)
could be observed in a flat band without the need of

FIG. 4 (color online). Correlation function of photons emitted
by the B sites gð2Þ0jB ¼ hb†0b

†
jb0bji=hb

†
0b0ihb

†
jbji for different drive

strengths f=κ at fixed detuning δQB ¼ 0 (upper panel) and
different detunings δQB=J at fixed drive strength f=κ ¼ 0.05
(lower panel) as calculated with iTEBD. The density-wave
oscillations correspond to a period doubling with respect to
the unit cell of the underlying lattice. In (b) the drive stays
resonant with the top of the middle band. The inset shows the
length of the density-wave oscillations ξ obtained from an
exponential fit. Arrows mark the corresponding values in the
main figure. Other parameters chosen as in Fig. 3.

FIG. 5 (color online). (a) On-site and nearest-neighbor corre-
lator gð2Þ00B; g

ð2Þ
01B as a function of g=J for f=κ ¼ 0.05 (blue arrow in

Fig. 3). The inset shows the complete spatial dependence of the
coherence function for the g=J values marked by arrows in the
main figure. (b) Correlation length as a function of g=J obtained
from an exponential fit of the correlator. Other parameters chosen
as in Fig. 3.
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A mechanical “topological insulator”
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Whispering gallery modes
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x cos(#)

Lord Rayleigh, 1896 Lord Rayleigh, 1912

 n(r,#) = Jn(kr) cos(n#)
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Why do we need wave guides (surface states) for phonons?
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Schuetz et al., arXiv (2015)Spadoni et al., PNAS (2010)
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Sensitivity to exact boundary shape
Lord Rayleigh, Theory of Sound, 1896

▪ convexity leads to bulk 
modes 

▪ no spectral separation

8
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▪ We need spectral separation of bulk and edge modes: 
topologically non-trivial fermion systems!

Do we know stable surface modes?
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single particle/mode

many modes

simple lattice modeli~ ̇a(ri) = Hab(ri, rj) b(rj) ẍa(ri) = �Dab(ri, rj)xb(rj)

a

b

ri

x2(ri)

x3(ri)

x1(ri)

mẍ = Fi~ ̇ = H 
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▪ Schrödinger equation for a  lattice model (Hamiltonian) 

▪ Newton’s equation of motion for coupled lossless mechanical oscillators 
(Dynamical matrix)

Schrödinger vs. Newton

11

Hab(ri, rj) = H⇤
ba(rj , ri)i~ ̇a(ri) = Hab(ri, rj) b(rj)

Dij 2 R
D : positive definite

ẍa(ri) = �Dab(ri, rj)xb(rj)
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Implementation with mechanical oscillators 
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Constraints due to time reversal symmetry, necessary ingredients

13

energy

momentum0 ⇡�⇡

We need four bands: trade local degrees of freedom 
with a larger unit cell

Local modes should be easy to identify.

Gaps should be large in order to be stable against 
unavoidable dissipation.
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�s =
2⇡

3
s

The doubled 1/3-Hofstadter problem
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flux

energy

H =f
X

r,s,↵=±
|r, s,↵ihr, s± 1,↵|+ |r, s,↵ihr ± 1, s,↵|e±i↵�s .

r

s

large gaps

two local d.o.f.

three sites in u.c.

Hofstadter, PRB (1976) 
Hafezi et al., Nature Photonics (2013)
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Implementation with mechanical oscillators

▪ So far, the Hamiltonian is still complex: 
 
 
 

▪ Go to a new basis: combine local Kramers pairs  
 
 
 
 
The result can be interpreted as a dynamical matrix  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Our implementation
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Illustration of couplings
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Results 
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Driving and bare data
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▪ Drive: force position of two local pendula 
▪ Analysis: track all positions
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Steady state modes

21

2.144 Hz2.380 Hz
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Driving into steady state
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Steady state spectra

23

1.8 2.0 2.2 2.4 2.6 2.8

0
0.

5
1

1.
5

2

Frequency in Hz

M
ea

n 
re

sp
on

se
 in

 m
m

1.8 2.0 2.2 2.4 2.6 2.8

0
0.

2
0.

4
0.

6
0.

8
1

Frequency in Hz

R
el

at
iv

e 
re

sp
on

se



||Sebastian Huber Condensed matter theory and quantum optics

The main result: Helical edge spectrum
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Not “just” a whispering gallery mode

25



||Sebastian Huber Condensed matter theory and quantum optics

What is it, what isn’t it, what is it good for?

▪ It is a system with “topologically protected” edge states 
▪ It needs certain symmetries which are not generic 

▪ It is not a “topological state of matter” 
▪ No response is quantized 

▪ Stable phononic wave guides are useful for 
▪ Acoustic lensing 
▪ Vibration isolation 
▪ Acoustic cloaking

26

Hafezi et al., Nature Photonics (2013) 
Rechtsmann et al. Nature (2013)  

Kane and Lubensky, Nature Physics (2013) 
Paulose et al., arXiv (2014)



||Sebastian Huber Condensed matter theory and quantum optics 27



||Sebastian Huber Condensed matter theory and quantum optics

Conclusions and outlook

28

▪ Stable edge modes for acoustic waves 
▪ measurement of edge spectrum 
▪ stable against “good” disorder 
▪ domain walls guide waves 

▪ In-depth studies of disorder effects: 
▪ localization length for “bad” disorder 
▪ stability agains stronger disorder 

▪ Detailed study of classical non-linearities 

▪ Science 349, 47 (2015)
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