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Review: Integer Quantum Hall effect

VH = RHI
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h

ne2

n

What is remarkable about this result is 
that there are so many system 
parameters that we dont know and 
cannot control. Irrespective of that we 
obtain fundamental constants in a 
macroscopic measurement to such a 
remarkable accuracy. This was the 
first hint that something topological 
must be involved.
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Some recent experiments on synthetic gauge field with photons

 
 
Fig. 1: Geometry and band structure of honeycomb photonic Floquet topological 
insulator lattice.  (a) Input facet of photonic lattice, honeycomb geometry with “zig-zag” 
edge terminations on the top and bottom, and “armchair” terminations on the left and 
right sides.  (b) Schematic diagram of the helical waveguides.  The waveguides are 
helical with their rotation axis in the z-direction, with radius R and pitch Z.   (c) Spatial 
band structure (β vs. (kx,ky)) for the case of non-helical waveguides comprising a 
honeycomb lattice (R=0). Note the band crossings at the Dirac point. (d) Spatial bulk 
band structure for the photonic topological insulator: helical waveguides with R=8µm 
arranged in a honeycomb lattice.  Note the band gap opening up at the Dirac points 
(labeled with the red, double-sided arrow), which corresponds to the band gap in a 
Floquet topological insulator.     
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FIG. 1: Real-space unit cell and reciprocal-space BZ of the 3D
DG PhC. a, Real space geometry in a bcc unit cell where a1 =
(−1,1,1) a2 , a2 = (1,−1,1) a2 and a3 = (1,1,−1) a2 . The two identi-
cal gyroid structures of red and blue colors are high refractive index
(n= 4) materials; they are inversion pairs of each other with respect
to the origin(o). An air sphere (r/a = 0.13) located at ( 14 ,−

1
8 ,
1
2 )a

breaks the inversion symmetry of the system. b, The BZ of the bcc
lattice. Weyl points and linear line-degeneracies of investigation in
this letter always lie in the green plane through the origin(Γ). Γ-N is
along [101] and Γ-H is along [010](ŷ). c, An air-isolated DG surface
can be formed by terminating the perturbed gyroid (red) but not the
other (blue). The SG PhC on the top has a large complete bandgap
as shown in Fig. 2a.

up. The three-fold degenerate point is well isolated in fre-
quency from other parts of the dispersion diagram of the DG
bandstructure, making it an ideal starting point for applying
symmetry-breaking perturbations.
The three-fold degeneracy of quadratic dispersions at Γ can

be lifted by breaking the I4132 space group without breaking
P or T symmetries. This is done by replacing a part of the gy-
roid material with two air-spheres (one on each gyroid). The
first air-sphere is placed in the red gyroid at ( 14 ,−

1
8 ,
1
2)a, as

illustrated in Fig. 1a; and the other is its inversion pair in the
blue gyroid (not illustrated in Fig. 1a). This perturbation lifts
the 5th band out of the three-fold degeneracy with the 3rd and
4th bands at Γ, as shown in Fig. 2b. The 4th and 5th bands
linearly cross each other, forming a closed line-degeneracy
around the Γ point in the Γ-N-P-H plane, inside an other-

wise complete frequency gap. It is worth pointing out that
this bandstructure, although not exhibiting Weyl points, is in-
teresting in itself in analogy to the line-node semimetals [23].
We show its flat surface dispersions towards the end of this
paper.
In what follows, we break the PT symmetry to obtain Weyl

points of photons for the first time. We start with the struc-
ture from Fig. 2a. First, we break P while preserving T. Since
T maps a Weyl point at k to −k with the same chirality, there
must exist at least two other Weyl points, both of opposite chi-
rality, to neutralize the whole system. So the minimal num-
ber of Weyl points in this case has to be four. We break P
by placing only one air sphere on one of the gyroids (but not
the other) at ( 14 ,−

1
8 ,
1
2 )a[34], as illustrated in Fig. 1(a). Un-

der this pure P-breaking perturbation[35], two pairs of Weyl
points, shown in Fig. 2c, emerge along Γ-N and Γ-H direc-
tions. The fact that all the Weyl points appear along high-
symmetry lines significantly simplifies the analysis. There are
no other states in the vicinity of the Weyl points’ frequencies.
Second, DC magnetic fields (B), along different directions,

are applied to the original DG PhC structure in Fig. 2a to
break the T while preserving P. We assume the high-index gy-
roid material is gyroelectric and use a generic model [24] to
describe its magnetic response. When B is along ẑ, we assume
the permittivity tensor takes the form of

ε(|B|) =

⎛

⎝

ε11(|B|) iε12(|B|) 0
−iε12(|B|) ε11(|B|) 0

0 0 ε

⎞

⎠ (1)

where det(ε(|B|)) = (ε211(|B|)−ε212(|B|))ε = ε3; this constant
determinant condition ensures the dispersions as a whole do
not move much in frequency with the external DC B fields.
The dimensionless effective magnetic field intensity is de-
fined as |B| ≡ ε12/ε in this paper. When B field is along
other directions, the corresponding ε tensor can be obtained
through coordinate transformations. (Note the T-breaking can
be equally well implemented via µ for gyromagnetic mate-
rials [25].) Under this pure T-breaking perturbation, only a
single pair of Weyl points emerges along the direction of the
magnetic field. This is the minimum number of Weyl points
that can exist under the inversion symmetry. These two Weyl
points are still frequency-degenerate: P maps a Weyl point at
k to −k with the opposite chirality. An example of this is
shown in Fig. 2d.
Third, we apply both P and T breaking perturbations at

the same time to observe the phase transitions between the
two(II) Weyl points in the pure T-breaking phase and the
four(IV) Weyl points in the pure P-breaking phase. Inter-
estingly enough, different magnetic field directions produce
strikingly different phase diagrams. When B is applied along
Γ-H, only two phases exist: the T-breaking dominated phase
(II) and the P-breaking dominated phase (IV). The pure P-
breaking phase, shown in the contour plot Fig. 2c, has four
Weyl points: two with positive chiralities along Γ-H and two
with negative chiralities along Γ-N. Applying magnetic field
along the Γ-H direction drives the two negative-chiralityWeyl

!

 
 

Following the same path for a |B� photon at site (0,0) results in |A��after a full loop. A change of 

basis to |↑,↓�= (|A�±i |B��/√2, reveals that after the same loop, |↑� becomes i|↑�, and |↓��

becomes -i|↓�, which is precisely the π/2 flux per plaquette that was sought. 
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Figure" 1: a. Circuit topological insulator schematic. At each lattice site, the two inductors “A” and “B” 
correspond to right and left circularly polarized spins. The inductors are capacitively coupled via the green 
boxes, where the symbol inside the box describes the braiding: 0 means a capacitive coupling between 
identical inductor components, and the π/2, π and 3π/2 correspond to couplings that either connect opposite 
ends of the same inductors, opposite inductors, or both. This labeling convention starts on the site more up- 
and left- ward. To understand the Berry phase we follow a photon around a single plaquette: (i) The photon 
begins on sublattice A of site (0,0). (ii) It is then coupled capacitively to (1,0), remaining on sublattice A. (iii) 
From here it is capacitively coupled to site (1,1) on inductor A, and to site (0,1), with a negative sign, onto 
sublattice B. It is finally coupled back to site (1,0), returning on sublattice B. b. Structure of the coupling 
elements between lattice sites.  The capacitive couplers, shown in the top row, connect the inductors on 
different lattice sites. The second row shows the topology of the corresponding electrical connections, and the 
third row shows the corresponding rotational transfer matrices. c. Band Structure of a Circuit TI. A strip of 
circuit TI of finite length with periodic boundary conditions in the transverse direction is numerically 
diagonalized, yielding massive bulk bands (gray), and spin-orbit-locked edge states (blue, red) that reside in 
the bulk gap. The purple edge modes are not topologically protected. The highest energy protected edge-
channel is localized to a single site along one direction, while the middle and lowest edge-channels are 
localized to two and three sites respectively. d. Photograph of Circuit Topological Insulator. The inductors 
(black cylinders) are coupled via the capacitors (blue); circuit topology is determined by the trace layout on 
the PCB (yellow). 
!
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(Δϕp) because of their different propagation constants. A second
modulator (right) couples light in the odd mode back into the even
mode, and light exiting the interferometer exhibits an interference
profile, as in the atomic version but now depending on cos(Δϕp).

We use the Ramsey-type interferometer to probe the phase and
break the reciprocity of light, thus inducing an effective magnetic
field. This is achieved if the two modulators have different phases
ϕL and ϕR (Fig. 1c). When inducing couplings, modulators impart
their phases on photons. With respect to the phase of the local oscil-
lator that drives the modulator, the imparted phase on photons is
negative (positive) if excitation (de-excitation) occurs1. If the
phases of both modulators are identical (Fig. 1b), then the total
imparted phases are cancelled. However, if the modulators have
different phases (Fig. 1c), these imparted phases are detected and
the transmission becomes direction dependent. When light enters
the interferometer from the left (right), the output of the interfe-
rometer is proportional to cos(Δϕp − ϕL + ϕR) (cos(Δϕp − ϕR + ϕL)).
The non-reciprocal transmission is a result of an effective magnetic
flux, where Bflux = ϕL − ϕR (ref. 1). We implement the photonic
Ramsey-type interferometer by using the supermodes (even and
odd modes) of a silicon coupled-waveguides structure. The mode
profiles are shown in Fig. 2a,b and the dimensions of the structure
in Fig. 2c. The modulators are formed by embedding pn and np
diodes in the waveguides (Fig. 2c). Figure 2d presents a top view
of the carrier distribution under an applied sinusoidal voltage
(red). The width of the depletion region (grey) changes as the
signal is applied, which induces a change in the refractive index of
the coupled waveguides22,23. The pn–np configuration18 ensures
that, at any instant in time, only one side of the coupled waveguides
experiences a depletion width change, which enables coupling
between the supermodes. Figure 2e presents an overview of the
interferometer. The two modulators are identical and only their
modulation phases are different (ϕR and ϕL). The length of each
modulator is 3.9 mm, which in simulation provides an equal prob-
ability (50%) of populating both the two supermodes. The gap of the

coupled waveguides varies along the interferometer. At the edges
where the modulators are located, this gap is 900 nm (to separate
the two supermodes in frequency by a few GHz in the optical
c-band; Supplementary Fig. 1). In the centre, the gap tapers (taper
length of 100 µm) down to 550 nm and remains at this for a distance
Lf such that the two supermodes experience different effective
indices Δneff , and the phase difference between the two supermodes
becomes Δk × Lf (Δk = 2πΔneff/λ and λ is the optical wavelength).
Here, Lf varies from 175 µm to 350 µm for different fabricated
devices. We also place multimode interference devices at each end
of the interferometer so that only the even mode enters and exits
the interferometer. A microscope image and a simulated power
distribution of the multimode interference are shown in Fig. 2e
(bottom images).

We experimentally observed non-reciprocal fringe patterns, indi-
cating the existence of an effective magnetic flux from 0 to 2π cor-
responding to a non-reciprocal 2π phase shift of 8.35 mm (length of
our interferometer) and a fringe extinction ratio of 2.4 dB. Figure 3a
shows the optical transmission of our devices when light is propa-
gating from left to right (L→ R) and right to left (R→ L). Two syn-
chronized sinusoidal radiofrequency signals are applied such that ϕL
and ϕR are correlated. We chose λ = 1,570 nm to match the modu-
lation frequency ( fM = 4 GHz) to the frequency difference between
the supermodes. As shown in Fig. 3a we see full periods of sinusoi-
dal optical transmissions (fringe patterns) as Δϕ (= ϕL − ϕR) varies
from 0 to 2π. The solid curves in Fig. 3a are the theory curve fits
(Supplementary Section II), all of which match the experiments
well. For all values of Lf we observe clear non-reciprocal
transmission, where the Δϕ that corresponds to the maximum
transmission for R→ L (ΔϕR→L) is different from that for L→ R
(ΔϕL→R). Figure 3b also shows a linear relationship between
|ΔϕR→L − ΔϕL→R| and Lf. This result is expected, because ΔϕR→L
and ΔϕL→R are both proportional to the phase difference between
the two supermodes, which is also proportional to Lf. The exper-
iments (circles) match the theory well (solid line), and the data all
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Figure 2 | Ramsey-type interferometer design and fabrication. a,b, Simulated mode profiles for both the even mode (a) and the odd mode (b), which
coexist in a silicon coupled waveguide structure. c, Cross-sectional view of the coupled waveguides. A set of pn and np diodes is doped to modulate the
refractive index. d, Top view of carrier density (N) distribution in the coupled waveguide along the x-axis (slab omitted). The width of the depletion region
(grey) changes over time as a sinusoidal signal is applied to the diodes. The applied sinusoidal voltage V is shown in red. e, A photonic Ramsey
interferometer implemented as a silicon coupled-waveguide structure. Bottom: microscope image and simulated light transmission of a pair of multimode
interference devices located at the outer ends of the interferometer.
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(DOS) is obtained by averaging the local density of states over all resonator positions. The
experimental setup and the tight-binding description of the microwave artificial graphene are
detailed in [31].

The paper is organized as follows. In section 2, we first focus on zigzag and bearded
boundary geometries. We show experimentally how uniaxial strain acts as a switch between
zigzag and bearded edge states. Based on a tight-binding analysis, a diagram of the existence of
edge states is theoretically proposed. We recall in section 3 the topological origin of the three
types of the considered edge states, namely zigzag, bearded and armchair. A geometrical
analysis in the k-space allows to predict the presence of edge states and their evolution under
strain. Section 4 is dedicated to armchair geometries. A quantitative experimental and
theoretical analysis is done. The existence of a new type of state, appearing at the intersection of
two type of edges, namely the corner state, is eventually discussed.

2. Zigzag and bearded edges in honeycomb lattice under uniaxial strain

The lattice presented in figure 1(a) exhibits three different edges: armchair, zigzag and bearded.
We will consider ribbons uniaxially strained along one lattice axis (horizontal direction in
figures 2 and 6) where the strain changes one of the three nearest-neighbor couplings only. The
modified coupling is denoted by ′t and the anisotropy parameter by β = ′t t. Armchair edges
are along the strain axis and consequently will not support any edge state whatever the
anisotropy as will be discussed in section 3. Figure 1(b) shows a typical DOS measured in an
unstrained ribbon, i.e. β = 1. The Dirac frequency νD is obtained by following the procedure
described in [31] and defines the frequency origin. The peak observed at the origin corresponds
to ‘zero-energy’ modes in the condensed-matter context; we will call them ’zero-modes’ in the
following. Experimentally, we can extract the intensity distributions by means of reflection
measurements (see [31] for details). Figure 2 shows the intensities of the wavefunctions
associated to zero-modes for different values of β: the zero-modes are all located along edges. In
the case of the unstrained lattice β = 1, figure 2(b), the intensity is clearly distributed along both
zigzag and bearded boundaries. Then, the anisotropy parameter β controls the relative weight
between the two types of zero-modes. For β = 0.4 (figure 2(a)), bearded edges are dominant
whereas they are totally absent for β = 2.5 where only the zigzag edge is illuminated

Figure 1. (a) Picture of an unstrained artificial graphene ribbon with zigzag, bearded and
armchair edges. The lattice constant is 15mm. (b) Corresponding experimental density
of states (DOS). The arrow indicates the zero-modes appearing at the Dirac frequency
νD.
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Phases of matter have long been characterized by their sym-
metry properties, with each phase classified according to 
the symmetries that it possesses1. The discovery of the inte-

ger and fractional quantum Hall effects in the 1980s has led to a 
new paradigm, where quantum phases of matter are characterized 
by the topology of their ground-state wavefunctions. Since then, 
topological phases have been identified in physical systems ranging 
from condensed-matter2–9 and high-energy physics10 to quantum 
optics11 and atomic physics12–15.

Topological phases of matter are parametrized by integer topo-
logical invariants. As integers cannot change continuously, a conse-
quence is exotic phenomena at the interface between systems with 
different values of topological invariants. For example, a topological 
insulator supports conducting states at the surface, precisely because 
its bulk topology is different to that of its surroundings8,9. Creat-
ing and studying new topological phases remains a difficult task in  
a solid-state setting because the properties of electronic systems  
are often hard to control. Using controllable simulators may be 
advantageous in this respect.

Here we simulate one-dimensional topological phases using a 
discrete time quantum walk16, a protocol for controlling the motion 
of quantum particles on a lattice. We create regions with distinct 
values of topological invariants and directly image the wavefunction 
of bound states at the boundary between them. The controllability 
of our system allows us to make small changes to the Hamiltonian 
and demonstrate the robustness of these bound states. Finally, using 
the quantum walk, we can access the dynamics of strongly driven 
systems far from the static or adiabatic regimes17–19, to which  
most previous work on topological phases has been restricted. 
In this regime, we discover a topologically protected pair of  
non-degenerate bound states, a phenomenon that is unique to  
periodically driven systems.

Results
Split-step quantum walks. Discrete time quantum walks have 
been realized in several physical architectures20–24. Here we use the 
photonic set-up demonstrated in ref. 24 to implement a variation 
of these walks, the split-step quantum walk25 of a single photon, 
with two internal states encoded in its horizontal, |H , and vertical, 
|V , polarization states. The quantum walk takes place on a one 
dimensional lattice (Fig. 1). One step of the split-step quantum 
walk consists of four steps. First, a polarization rotation R( 1) of the 
single photon is achieved with a suitable wave plate (see Methods), 
then a polarization-dependent translation T1 of |H  to the right by 
one lattice site using a calcite beam displacer. This is followed by a 
second rotation R( 2), and finally another translation T2 of |V  to 
the left. The quantum walk is implemented by repeated applications 
of the one-step operator U( 1, 2) = T2R( 2)T1R( 1).

The propagation of the photon in the static experimental set-up 
can be described by an effective time-dependent Schrödinger equa-
tion with periodic driving. The dynamics of the quantum walk can  
be understood through the effective Hamiltonian Heff( 1, 2), 
defined through U e iH( , ) =1 2

( , ) /1 2eff , where  is the time 
required for one step of the quantum walk. Throughout this  
paper, we chose units such that / 1. Therefore, the quantum 
walk described by the evolution U( 1, 2) corresponds to a strobo-
scopic simulation of the effective Hamiltonian Heff( 1, 2) viewed 
at unit time intervals. That is, after n steps of the quantum walk, 
the photon evolves according to U en inH( , ) =1 2

( , )1 2eff , mean-
ing that the evolution under the quantum walk coincides with the 
evolution under Heff( 1, 2) for integer multiples of .

The topological structure underlying split-step quantum walks 
is revealed by studying the structure and symmetry of Heff( 1, 2). 
Heff( 1, 2) has a gapped spectrum, with two bands correspond-
ing to opposite polarizations (Fig. 2a). Because the quantum walk  
is translationally invariant, each eigenstate is associated with a  

quasi-momentum k and a superposition of |H  and |V . In addition,  
this class of quantum walks has a chiral symmetry described in  
ref. 25 (also detailed in the Methods), which requires that the polar-
ization component of any eigenstate be confined to a particular 
great circle on the Bloch sphere. Therefore, as the quasi-momentum 
k traverses the first Brillouin zone from  −  to , the polarization 
component of the eigenstate traces a closed path confined to that 
great circle, see Fig. 2b and Methods. The total number of times W 
that this closed path winds about the origin is the winding number 
and gives the topological invariant of Heff( 1, 2).

Because W has to be an integer, it cannot be changed by small 
modifications of the effective Hamiltonian. That is, W can only 
change when the spectrum of Heff( 1, 2) closes its gap while  
preserving chiral symmetry. For the split-step quantum walk, two 
distinct topological phases with W = 0 and W = 1 exist as can be seen 
in the phase diagram shown in Fig. 2c. The two phases are separated 
by lines along which the gap closes.

As we mentioned above, non-trivial topological phases support  
localized states at their boundaries. Because our experimental  
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Each eigenstate of Heff( 1, 2) consists of a quasi-momentum k and a 
corresponding polarization, shown here on a Bloch sphere using the 
symbols from a. As k runs from  −  to  (black arrow in a), the polarization 
follows a closed trajectory around a great circle (black arrow in b). The 
winding number of this trajectory, W, characterizes the topology of Heff( 1, 

2). (c) Phase diagram of Heff( 1, 2) that shows the winding number W as 
a function of 1 and 2. The transition lines correspond to points where the 
spectral gap of Heff( 1, 2) closes at eigenvalues E = 0 (black dash-dotted 
line) and E =  (red dashed line).
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arising from the coupling between higher energy modes
of the pillars. In particular, we observe a non dispersive
band in which polaritons have an infinite effective mass.
The observation of this flat band, first predicted in the
context of cold atomic gases, opens the way to the study
of the interplay of interactions, frustration and spin dy-
namics in a novel driven-dissipative framework.

Our structure is a Q = 72000 λ/2 microcavity. It
is made of a Ga0.05Al0.95As layer surrounded by two
Ga0.05Al0.95As/Ga0.8Al0.2As Bragg mirrors with 28/40
top/bottom pairs respectively. Twelve GaAs quantum
wells of 7 nm width are inserted inside the cavity, re-
sulting in a Rabi splitting of 15 meV. Experiments are
performed at 10 K and -17 meV cavity-exciton detuning.
We engineer a honeycomb lattice of coupled micropillars
by using electron beam lithography and dry etching of
the sample down to the GaAs substrate (see scanning
electron microscope image of the structure in Fig. 1(a)).
The diameter of each micropillar is d = 3 µm, and the
distance between two adjacent micropillars, which de-
fines the lattice constant, is a = 2.4 µm. In those con-
ditions, the etched cavity shows a polariton lifetime of
27 ps at the bottom of the lower polariton band. As the
interpillar distance is smaller than their diameter, the
micropillars spatially overlap (see sketch in Fig. 1(b)).
This results in a sizable polariton tunnel coupling be-
tween adjacent micropillars [24] via their photonic com-
ponent. For our structure, the tunnel coupling amounts
to 0.25 meV. The system is excited out of resonance with
a Ti:Sapph monomode laser at the energy of the first
reflectivity minimum of the stop band (1.687 eV) in a
spot of 30 µm diameter covering around 30 micropillars.
The photoluminescence is collected through a high nu-
merical aperture objective (NA = 0.65), dispersed in a
spectrometer and detected by a CCD camera on which
we can image either the real or the momentum space.
Note that we use a low-bandpass filter to avoid the laser
stray light in the detector, and that a chopper was used
in the case of high power excitation to avoid heating of
the sample.

Under non-resonant, low power excitation, the inco-
herent relaxation of polaritons results in the population
of all the energy bands of the structure. Note that for
low power excitation polariton-polariton interactions are
negligible so that single particle physics of the honey-
comb lattice is probed. Figure 1(d) shows the measured
far field photoluminescence containing many groups of
bands, separated by energy gaps. The two lowest bands
(S bands) arise from the coupling between the fundamen-
tal mode of the pillars, which is a cylindrically symmetric
(S) mode . At higher energy, we observe a group of four
bands (P bands) arising from the coupling between the
first excited state of the pillars, which is twice degen-
erate and has two lobes [24], as sketched in Fig. 1(e).
The separation between these two groups of bands is
∆E = 3.2 meV, the energy difference between the two

S 
ba

nd
s

P 
ba

nd
s

ky/(2π/3√3a)

(E
y−1

58
0.

8)
 m

eV

−9 −6 −3 0 3 6 9

0

2

4

6

8

10(d)

FIG. 1. a) Scanning electron microscope image of a corner
of the microstructure. One hexagon of pillars is underlined
with blue disks. The dark arrows show the growth axis of the
cavity. The overlap between pillars is sketched in (b). (c) Re-
ciprocal space (first Brillouin zone) showing the Γ symmetry
point at the center of the zone and Dirac K and K’ symmetry
points at its corners. (d) Measured momentum space energy
resolved photoluminescence along the kx = 2π/3a line, un-
der non-resonant low power excitation. (e) Sketch of the real
space distribution of S and P modes in a single pillar.

lowest energy states of the individual pillars. Above those
two groups of bands, many other can be seen arising from
the hybridization of higher energy modes of the pillars.

We first concentrate on the two S bands. They stem
from the coupling between micropillar states which have
a cylindrical symmetry similar to that of the carbon
Pz electronic orbitals in graphene. Thus, we expect
the two S bands to present features analogous to the
π and π∗ bands of graphene, including six Dirac (con-
tact) points [5] in the first Brillouin zone (sketched in
Fig. 1(c)). Figure 2(a) shows the measured emitted in-
tensity in momentum space when only the energy of the
Dirac points is selected (zero energy in Fig. 1(d)). We
observe the six Dirac points at the corner of the first Bril-
louin zone (yellow points). The adjacent Brillouin zones
are also seen. Figure 2(b, c) show the measured energy
resolved emission along the lines 1 and 2 indicated in
Fig. 2(a), passing through four and three Dirac linear in-
tersections respectively. As the confinement energy on
each site of the lattice is much larger than the tunneling
energy, the system is well described by the tight bind-
ing approximation. Including first and second neighbor
tunneling the following dispersion can be obtained [5]:

E(k) = ±t
√

3 + f(k)− t
′

f(k), (1)

More recently several new platforms, 
more specifically optical systems have 
realized quantum hall effect. 

The advantage of studying these new 
platforms is that each will provide 
different diagnostics to probe the 
topology of the state, which may not 
be feasible in more traditional 
condensed matter systems. Take for 
example Jon’s talk yesterday.
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Observation and 
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I would focus on what seems to be 
popularly known as Mohammad’s 
resonators. This platform has 
implemented Hofstadter Hamiltonian 
with a synthetic gauge field.  Lot of 
progress has been made to 
charecterize the edge modes and its 
robustness. 

But the hallmark feature of the 
topological phase is the topological 
invariant. Can we measure the 
topological invariant within this plat 
form?



»  Scheme to measure topological invariants

» Experimental observation of topological invariants  

» Generalization to interacting many body topological states
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Topological invariants with photonic resonators
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Shift in transmission 
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see also: Ozawa et al. (2012), 

Bardyn et al., Y. Chong


Kraus et al. (2012)

A canonical way to think about 
topological invariant is to use 
Laughlin’s though experiment 
specialized to the resonator system.



G o a l :  To 
measure topological 
invariants (a bulk 

feature)  


To o l s a t h a n d :    
E d g e m o d e s / s p e c t r a l 
information (via transmission 

resonances)


Topological 
Quantum field 
theory (TQFT)


 Anomalous edge 
spectral flow as a direct 
probe of topological 

invariant


Generalizable to 
FQH states




Topological quantum field theory

Microscopic description TQFT description

Restrict this talk to U(1) Chern-Simons theory

Geometric skeleton of a more complex field theory 



Effective EM actions for 3+1D in matter

Review: Effective gauge theories with gauge 
invariance

Iem =

Z
d

3
x dt (aijEiEj + bijBiBj + ciEi + diBi)

E = �r�� @A

@t
, B = r⇥A

Manifestly gauge invariant
A0

i = Ai + @i⇤ Iem(A0) = Iem(A)

Ji = ��Iem
�Ai

Matter Maxwells equations



Chern-Simons Gauge Theory 
In 2+1D one can write another action with an 

intricate gauge invariance

ICS(A) =
k

4⇡

Z

M2⇥R
d

2
x dt ✏

ijk
Ai@jAk

One to One correspondence with TKNN argument
https://pitp2015.ias.edu/sites/pitp2015.ias.edu/files/WittenLecture2.pdf

Not quite gauge invariant, but             is well defined if  k 2 ZeiICS

ICS(A
0
) = ICS(A) mod 2⇡kZ

A0
i = Ai + @i⇤ ✏ijkA0

i@jA
0
k = ✏ijkAi@jAk + @i(✏

ijk⇤@jAk)

�
xy

= k
e2

h
Quantized Hall 
conductance!!!

J
x
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CS

�A
x

=
kE

y

2⇡

https://pitp2015.ias.edu/sites/pitp2015.ias.edu/files/WittenLecture2.pdf


Gauge invariance with a boundary

⌃

@⌃

Only reconciliation ICS = I⌃CS(A) + I@⌃(�,A|@⌃)

ICS(A) =
k

4⇡

Z

⌃⇥@⌃⇥R
d

2
x dt ✏

ijk
Ai@jAk

Gauge invariance requires             to be chiral and gapless in  �I@⌃(�,A|@⌃)

I@⌃(�,A|@⌃) is forbidden in 1+1D on its own is forbidden in 2+1D on its ownICS = I⌃CS(A) + I@⌃(�,A|@⌃)

(bulk-edge correspondence) But together they are well defined

Gauge non-invariant due to boundary term

A0
i = Ai + @i⇤ ICS(A

0) = ICS(A) +
k

4⇡

Z

@⌃
dx dt⇤✏jk@jAk
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Gauge invariance of CS theory

1) Leads to integer quantization of Hall current

2) Fixes effective boundary theory

Valid effective boundary theory: Chiral luttinger liquid
(single edge mode)
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Canonical commutation directly leads to anomalous edge spectral flow 
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Anomalous spectral flow at the edge

En =
2⇡v

L

✓
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◆

✓ : 0 ! 2⇡

 Shift of the edge spectrum                     Gauge non-invariance of edge

   “Integerness" of  shift                             k 2 Z



What is anomalous?(Microscopic viewpoint)

1D 2D

Left moverright mover
Left mover

LM and RM cannot 
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1D
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Experimental realization

Metal (Al) 
Routing

BOX

SiO2

1.6 um

220 nm

510 nm
110 nm

Heaters (Ti)

Link ResonatorSilicon 
Substrate

Heater
Metal 

Routing

Site

Resonator 

Link

Resonator 

Heater Roundtrip Phase = 



First observation of anomalous spectral flow !!!
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Fractional Quantum Hall state of light 

Gauge field interaction

(k-body)+

Fractional 
quantum 

Hall states

Topological 
Quantum field 
theory (TQFT)


Kapit et al. PRB (2013),PRX 
(2014)



Generalization of CS to FQH states (e.g. Laughlin 
1/2 state)
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Emergent U(1) gauge field “a” that constitutes intrinsic topological 
order
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quasiparticle spectrum! 
k = 2 for Laughlin 1/2
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Mittal, SG, Vaezi, Fan, Hafezi, arXiv:1504.00369

Measuring spectral flow for Laughlin 1/2 state
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2⇡v
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Program

1) Preparation.

2) Observe boundary modes.

3) Selective gauging of boundary modes. (What is gauged? 
quasiparticles or fundamental particles!!!)

4) Anomalous edge spectral flow would be a window into the bulk 
state with strongly correlated topological order
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