Photonic Quantum Hall Effect: Lessons From Chern Simons Perspective

Non-equilibrium dynamics of strongly interacting photons

October 7, 2015

Sriram Ganeshan
Simons Center For Geometry and Physics
\&
CMTC, U of Maryland

Observation of the Chern-Simons gauge anomaly
arXiv:1504.00369
Sunil Mittal, SG, Jingyun Fan, Abolhassan Vaezi, Mohammad Hafezi

Review: Integer Quantum Hall effect

Some recent experiments on synthetic gauge field with photons

- R. O. Umucalılar and I. Carusotto Phys. Rev. A 84, 043804 (2011)
-YE Kraus, Y Lahini, Z Ringel, M Verbin, O Zilberberg - Physical Review Letters, 2012
- L. Lu, L. Fu, J. Joannopoulos and M. Soljacic Nature Photonics 7, 294-299 (2013)
- T. Kitagawa ...Demler, White Nature Communication (2012)
-K Fang, Z Yu, S Fan - Nature Photonics (2012)
- M Rechtsman, et al. - Nature Photonics (2012)
- A. Khanikaev, .. MacDonald, Shvets, Nature Material (2012)

- M. Verbin, O. Zilberberg, Y. Kraus, Y. Lahini, and Y. Silberberg Physical Review Letter (2013)
- MC Rechtsman ...M. Segev - Nature (2013)
- G. Jiang, Y. Chong Physical Review Letters (2013)
- V. G. Sala, ... A. Amo, Arxiv (2014)
- Peano... Marquardt Arvix:1409.5375 (2014)
- Jia Ningyuan, Ariel Sommer, David Schuster, Jonath:
- L. Tzuang ... M. Lipson - Nature Photonics (2014)
- Karzig, Bardyn, Lindner and Refael arXiv:1406.4156 (2

More recently several new platforms, more specifically optical systems have realized quantum hall effect. The advantage of studying these new platforms is that each will provide different diagnostics to probe the topology of the state, which may not be feasible in more traditional condensed matter systems. Take for example Jon's talk yesterday.

Observation and characterization of "topological" edge states

$$
H_{0}=-J \sum_{x, y} \hat{a}_{x+1, y}^{\dagger} \hat{a}_{x, y} e^{-i 2 \pi \alpha y}+\hat{a}_{x, y}^{\dagger} \hat{a}_{x+1, y} e^{i 2 \pi \alpha y}
$$

$$
+\hat{a}_{x, y+1}^{\dagger} \hat{a}_{x, y}+\hat{a}_{x, y+1}^{\dagger} \hat{a}_{x, y}
$$

afezi, Mittal, Fan, Migdall, Taylor Nature Photon 7, 1001 (2013)

Observation of boundary modes

I would focus on what seems to be popularly known as Mohammad's resonators. This platform has implemented Hofstadter Hamiltonian with a synthetic gauge field. Lot of progress has been made to charecterize the edge modes and its robustness.

Robust against disorder (Absence of backscattering)

Statistical evidence

But the hallmark feature of the topological phase is the topological invariant. Can we measure the topological invariant within this plat form?

In this talk

" Scheme to measure topological invariants
» Experimental observation of topological invariants
" Generalization to interacting many body topological states

Topological invariants with photonic resonators

Laughlin's argument

Hafezi, PRL 112, 210405 (2014)

Shift in transmission resonances

Threading unit flux requires manipulating every link resonator Is there a simpler way?

Topological quantum field theory

Geometric skeleton of a more complex field theory

Microscopic description

TQFT description

Restrict this talk to $\mathrm{U}(1)$ Chern-Simons theory

Review: Effective gauge theories with gauge invariance

Effective EM actions for 3+1D in matter

$$
\begin{gathered}
I_{e m}=\int d^{3} x d t\left(a_{i j} E_{i} E_{j}+b_{i j} B_{i} B_{j}+c_{i} E_{i}+d_{i} B_{i}\right) \\
E=-\nabla \phi-\frac{\partial A}{\partial t}, \quad B=\nabla \times A \\
A_{i}^{\prime}=A_{i}+\partial_{i} \Lambda \quad \longrightarrow \begin{array}{c}
I_{e m}\left(\mathbf{A}^{\prime}\right)=I_{e m}(\mathbf{A}) \\
\text { Manifestly gauge invariant }
\end{array}
\end{gathered}
$$

$$
J_{i}=-\frac{\delta I_{e m}}{\delta A_{i}} \quad \longrightarrow \quad \text { Matter Maxwells equations }
$$

Chern-Simons Gauge Theory

2+1D one can write another action with an intricate gauge invariance

$$
I_{C S}(\mathbf{A})=\frac{k}{4 \pi} \int_{\mathcal{M}^{2} \times \mathbb{R}} d^{2} x d t \epsilon^{i j k} A_{i} \partial_{j} A_{k}
$$

$$
A_{i}^{\prime}=A_{i}+\partial_{i} \Lambda \longrightarrow \epsilon^{i j k} A_{i}^{\prime} \partial_{j} A_{k}^{\prime}=\epsilon^{i j k} A_{i} \partial_{j} A_{k}+\partial_{i}\left(\epsilon^{i j k} \Lambda \partial_{j} A_{k}\right)
$$

$$
I_{C S}\left(\mathbf{A}^{\prime}\right)=I_{C S}(\mathbf{A}) \quad \bmod 2 \pi k \mathbb{Z}
$$

Not quite gauge invariant, but $e^{i I_{C S}}$ is well defined if $k \in \mathbb{Z}$

$$
J_{x}=-\frac{\delta I_{C S}}{\delta A_{x}}=\frac{k E_{y}}{2 \pi} \longrightarrow \sigma_{x y}=k \frac{e^{2}}{h}
$$

Quantized Hall conductance!!!

One to One correspondence with TKNN argument

Gauge invariance with a boundary

$$
\widehat{A_{i}^{\prime}}=A_{i}+\partial_{i} \Lambda \longrightarrow I_{C S}\left(\mathbf{A}^{\prime}\right)=I_{C S}(\mathbf{A})+\frac{k}{4 \pi} \int_{\partial \Sigma} d x d t \Lambda \epsilon^{j k} \partial_{j} A_{k}
$$

Gauge non-invariant due to boundary term
Only reconciliation $\quad I_{C S}=I_{C S}^{\Sigma}(\mathbf{A})+I^{\partial \Sigma}\left(\phi,\left.\mathbf{A}\right|_{\partial \boldsymbol{\Sigma}}\right)$
Gauge invariance requires $I^{\partial \Sigma}\left(\phi,\left.\mathbf{A}\right|_{\partial \Sigma}\right)$ to be chiral and gapless in ϕ
$I^{\partial \Sigma}\left(\phi,\left.\mathbf{A}\right|_{\partial \boldsymbol{\Sigma}}\right)$ is forbidden in $1+1 \mathrm{D}$ on its own
$I_{C S}^{\Sigma}(\mathbf{A})$ is forbidden in $2+1 \mathrm{D}$ on its own

But together they are well defined (bulk-edge correspondence)

1) Leads to integer quantization of Hall current
2) Fixes effective boundary theory

Valid effective boundary theory: Chiral luttinger liquid (single edge mode)

$$
H=\frac{v}{4 \pi} \int_{\partial \Sigma}\left(\partial_{x} \phi-\eta_{x}\right)^{2} d x d t \quad\left[\phi(x), \partial_{y} \phi(y)\right]=2 \pi i \delta(x-y)
$$

Bosonic field $\quad \phi=\phi+2 \pi$

$$
\eta_{x}=\left.A\right|_{\partial \Sigma}=\frac{\theta}{L}, \quad k=1
$$

Canonical commutation directly leads to anomalous edge spectral flow

$$
\left[H, O_{n}\{\phi\}\right]=E_{n} O_{n}\{\phi\} \longrightarrow E_{n}=\frac{2 \pi v}{L}\left(n-\frac{\theta}{2 \pi}\right)
$$

Anomalous spectral flow at the edge

$$
E_{n}=\frac{2 \pi v}{L}\left(n-\frac{\theta}{2 \pi}\right)
$$

Shift of the edge spectrum
"Integerness" of shift
$\longleftrightarrow \quad$ Gauge non-invariance of edge
$k \in \mathbb{Z}$

What is anomalous?(Microscopic viewpoint)

» Scheme to measure topological invariants
» Experimental observation of topological invariants
» Generalization to interacting many body topological states

Experimental realization

Heater $>$ Roundtrip Phase $=\theta \longrightarrow$

First observation of anomalous spectral flow !!!

1D states : No spectral flow (Control)

Mittal, SG, Vaezi, Fan, Hafezi, arXiv:1504.00369
» Scheme to measure topological invariants
» Experimental observation of topological invariants
» Generalization to interacting many body topological states

Fractional Quantum Hall state of light

Generalization of CS to FQH states (e.g. Laughlin 1/2 state)

$I_{C S}(\mathbf{A})=\frac{k}{4 \pi} \int_{\mathcal{M}^{2} \times \mathbb{R}} d^{2} x d t \epsilon^{i j k} a_{i} \partial_{j} a_{k}-\frac{1}{2 \pi} \int_{\mathcal{M}^{2} \times \mathbb{R}} d^{2} x d t \epsilon^{i j k} A_{i} \partial_{j} a_{k}$
Emergent $U(1)$ gauge field " a " that constitutes intrinsic topological order

Bulk:

$$
I_{C S}^{e f f}(\mathbf{A})=\frac{1}{4 \pi k} \int_{\mathcal{M}^{2} \times \mathbb{R}} d^{2} x d t \epsilon^{i j k} A_{i} \partial_{j} A_{k} \quad \sigma_{x y}=\frac{e^{2}}{k h}
$$

Boundary:
(Single mode edge)

$$
\begin{array}{r}
H=\frac{v k}{4 \pi} \int_{\partial \Sigma}\left(\partial_{x} \phi-\eta\right)^{2} d x d t \quad\left[\phi(x), \partial_{y} \phi(y)\right]=\frac{2 \pi i}{k} \delta(x-y) \\
\phi=\phi+\frac{2 \pi}{k}
\end{array}
$$

Anomalous spectral flow:

$$
\begin{gathered}
{\left[H, O_{n}\{\phi\}\right]=E_{n} O_{n}\{\phi\}} \\
\text { quasiparticle spectrum! }
\end{gathered}
$$

$$
\begin{aligned}
E_{n} & =\frac{2 \pi v}{L}\left(n-\frac{\theta}{2 \pi k}\right) \\
k & =2 \text { for Laughlin } 1 / 2
\end{aligned}
$$

Mittal, SG, Vaezi, Fan, Hafezi, arXiv:1504.00369

Measuring spectral flow for Laughlin $1 / 2$ state

$$
E_{n}=\frac{2 \pi v}{L}\left(n-\frac{\theta}{2 \pi k}\right)
$$

Program

1) Preparation.
2) Observe boundary modes.
3) Selective gauging of boundary modes. (What is gauged? quasiparticles or fundamental particles!!!)
4) Anomalous edge spectral flow would be a window into the bulk state with strongly correlated topological order

Collaborators

- Sunil Mittal (UMD NIST JQI)
- A. Vaezi (Cornell -> Stanford)
- J. Fan (NIST)
- Mohammad Hafezi (UMD, NIST, JQI)

Thanks you for your attention!

