Spectroscopic Probes of Turbulence in the Planet Formation Region of Disks

Joan Najita

National Optical Astronomy Observatory

In this talk...

How "primordial" are protoplanetary disks?

Possible ways to probe turbulence in inner disks (i.e., at < 10 AU)

- Available spectral line diagnostics (molecular)
- #1 Chemical mixing (challenging?)
- #2 Heat signature
- #3 Turbulent motions
- Constraints on disk winds?

Evolutionary Stages of Star Formation

What is a protoplanetary disk? When do planets form?

Embedded object:

Star assembling its mass; has a disk, outflow, envelope.

Classical T Tauri star:

Star essentially formed; has a disk.

Weak T Tauri star:

Little/no accretion, gas, and dust Possible planetesimals for later debris production

How Do Planets Form?

The Story of Core Accretion

Grains (µm) grew...

Planetesimals (km) that grew...

Protoplanets (~1000s km) that grew...

Giant planets (105 km)

5-10 M_{Earth} core accretion of gaseous envelope

Remnant disk cleared...tada!

The End

Birth of Planets Revealed in Astonishing Detail in ALMA's 'Best Image Ever'

- Flat-spectrum source (Class I.5)
- What's the situation for most disks?

Exoplanet Populations

Synthetic (Monte Carlo) Exoplanet & Debris Disk Populations

Are Protoplanetary Disks Primordial? Not so much.

T Tauri disks: highly evolved as a class

Are T Tauri disks like this...?

Or this....?

Studying Disks Spectroscopically

Clues from disk atmospheres:

- Chemistry
- Heating (T_q > T_d)
- Motions

Gaseous Probes of Inner Disks

NIR, UV, MIR diagnostics probe planet formation distances

Spectral Line Diagnostics NIR

Spectral Line Diagnostics NIR

Spectral Line Profiles NIR

Line profiles used to infer emission radii, physical conditions in the atmosphere

CO fundamental emission from disk truncation radius (0.05 AU) to ~ 1AU

Spectral Line Diagnostics MIR

Spectral Line Diagnostics MIR

Line Profiles for Water and Organics

MIR Spectra from TEXES on Gemini

R=100,000 $\lambda \sim 12 \mu m$

- Water (high quality profiles)
- Organics HCN, C₂H₂
 (10x weaker, challenging)

Najita et al., in prep

MIR line profiles locate emission in the **terrestrial planet region** (< few AU)

Emission from Disk Atmospheres

Gaseous Probes of Inner Disks

Still accreting after all these years...

Young stars accrete...and more slowly with age

How do they do it?

Magnetorotational Instability?

Low ionization in disk midplane – is the disk dead at planet formation distances?

How can we look for evidence of MRI in action?

- Chemical mixing
- Mechanical heating
- Turbulent motion

#1 Chemical Mixing

Migration of icy grains and gas in turbulent medium

- Vertically
- Radially

Looking for something chemically out of place...

Molecular Diagnostics of Chemical Mixing

- Chemical timescale is generally short in atmosphere, long at large r and small z.
- History is lost, for known diagnostics within few AU.

Chemical Timescale

- r (AU) Woitke et al. 2009a
- Need observable chemical species with long chemical lifetimes...
- Or look at effects from changes to elemental abundance ratios.

#1 Chemical Mixing

- Seems challenging.
- Questions:
 - How much mixing is predicted?
 - What is a useful probe?
- Molecular probes: Looking for molecules with long chemical timescales to serve as probes of turbulent mixing
- Elemental abundance probes: Does mixing affect elemental abundance ratios in an observable way? (e.g., planetesimal formation example)

#2 MRI Heating?

Gas temperatures of IR spectral line diagnostics (500-2500K) exceed dust temperatures in the same region of the disk.

→ Are elevated temperatures powered by mechanical heating?

#2 MRI Heating?

More dissipation at disk surface with MRI (current sheets, shocks) than with classical α disk

Turbulent heating rate equiv to α ~1

- Is atm heated mechanically?
- Need to rule out other possibilities.

Model Disk Atmospheres with FUV (Lya + Continuum) and Accretion Heating

Hot Atomic

Hot/warm Molecular (Lya + mechanical)

Cool Molecular (mechanical)

At 0.5 AU $L_{FUV} = 0.0025L_{sun} + Ly\alpha$ $\alpha_h = 0.5$ $a_a = 0.7$

Najita & Adamkovics in prep

Warm Molecular Columns: Observation & Theory

Observations best fit with Lya + mechanical heating, but Lya does much of the heavy lifting

- Lya important for hot molecules
- Mechanical heating enhances H₂O, HCN, CO₂

Heat Signature of Accretion in Protoplanetary Disks

FUV (Lya + continuum) impacts the hot/ warm molecular layer where most of the known diagnostics arise.

Look below the FUV-heated layer, in cool molecular layer, for evidence of accretion-related heating.

#2 MRI Heating

Looks like:

- Known diagnostics do not provide strong evidence.
- Heat signature of accretion below the FUV-heated layer?

Caveats:

- How strong is accretion heating (what is α_H?)
- Does detailed Lyα radiative transfer (scattering + absorption) change this picture?

#3 Turbulent Line Broadening

Turbulent velocity fluctuations rise with height, reaching ~ sound speed in the disk atmosphere.

Probing Turbulent Broadening in Spatially Unresolved Disks

2.3 µm CO overtone emission

Emission spectrum if no disk rotation

Line profile for a rotating disk (single line)

Convolution fits the data

Probing Turbulent Broadening in Spatially Unresolved Disks

2.3 μm CO overtone emission

Range in interline spacing probes line broadening

Rotation and excitation/ broadening separable because of large number of lines and spacing

Turbulent Line Broadening

Turbulent Line Broadening at Dead Zone Radii

3 μm H₂O and rovibrational

- Poor line list
- Rich spectra are rare

MIR transitions?

- + Emission is common
- Need to identify appropriate lines

Winds?

Clues from existing diagnostics:

- No large velocity offsets from v_{star} (winds not molecular?)
- Massive winds may absorb/scatter FUV, reducing great agreement between models and observations (would increase need for mechanical heating?)

Summary

Where everyone agrees we should see turbulence, we do

Non-thermal broadening within few 0.1 AU (CO overtone)

Where disk may be dead, we don't (but observations don't rule out MRI either)

- Inconclusive heat signature within few AU
- Line broadening not yet probed

Summary

Evolutionary status of protoplanetary disks

- Highly evolved as a class (from solid mass budget)
- Built planetesimal or larger objects beyond snowline (from C/O)

Chemical signature of turbulence?

- Look for molecules with long chemical timescales
- Any expected changes in elemental abundance ratios?

Heat signature of turbulence?

- No definitive signature from known diagnostics
- Look below FUV-heated layer?

Turbulent line broadening?

- Detected close to star where thermal ionized (CO overtone)
- Search for closely-spaced lines probing larger radii

Winds?

- Not molecular? (large velocity offsets not seen)
- If they absorb/scatter FUV, reinvestigate disk heating