Accretion disks in (ultra)compact binaries

Paul Groot,

Thomas Kupfer, David Levitan, Roque Ruiz-Carmona, Deanne Coppejans Tom Prince, Gijs Nelemans, Patrick Woudt, Danny Steeghs, Tom Marsh, Elmar Körding, Shri Kulkarni, Christian Knigge, Gavin Ramsay

Accreting Compact Binaries

Multiwavelength Science

Two Classes

Cataclysmic Variables

- Accretor: White Dwarf
- Donor: Low-mass star (H-fusing)
- Solar composition material

•
$$10^{-8} < \dot{M} < 10^{-10} M_{sun} / yr$$

- 75 min < P_{orb} < 12 hrs
- + $R_{disc} \sim R_{sun}$, $R_{disc} \leq 100\text{--}200 R_{WD}$
- $3000 \text{ K} < \text{T}_{disc} < \text{few x } 10^4 \text{ K}$
- Thousands of systems known
- Show dwarf novae outbursts

Review: Knigge et al., 2011

AM CVn stars

- Accretor: White Dwarf
- Donor: White Dwarf/ semi-deg. He star
- Hydrogen deficient: helium-dominated discs

•
$$10^{-8} < \dot{M} < 10^{-13} M_{sun} / yr$$

- 5.4 min < P_{orb} < 65 min
- $R_{disc} \le R_{sun}$, $R_{disc} \le 50 R_{WD}$
- 10000 K < T_{disc} < few x 10⁴ K
- Only 51 systems known
- Show dwarf novae outbursts

Review: Solheim et al., 2010; Nelemans et al., 2005

Accretion disc issues

- 1) Stability in high-mass transfer rate (AM CVn) systems
- 2) Dwarf novae outbursts in AM CVn stars
- 3) Accretion in long-period AM CVn stars, disc structures
- 4) Spiral density waves in outbursting CVs
- 5) Radio emission from Cataclysmic Variables: Jets?

Disk continuum, disk emission, secondary star

500

Flux (mJy)

Radboud University

Flux (mJy)

Disk continuum, disk emission: we don't understand the emission lines...

Spectra: chromosphere

Radboud University

Stability of disks

Short period AM CVn system

SDSS1908+3904

P_{orb} = 18.1 minutes
I ~ 15 degrees

(almost face-on)

High mass transfer rate:

hot-stable disc

Four years of high cadence Kepler data... :

1.3 million data points

Short period AM CVn system

Four years of high cadence Kepler data... : **1.3 million data points**

Figure 5. Fourier transform of the light curve obtained with Kepler of SDSS J1908.

Kupfer et al., 2015

Radboud University

Dynamic Fourier Spectra

Kupfer et al., 2015

Radboud University

Outbursting AM CVn stars

Palomar Transient Factory light curves: recurrence time dwarf nova outbursts in AM CVn systems

Cool Stable AM CVn discs

Doppler tomography

Clear inner and outer disc velocities from the emission profiles

Kupfer et al, 2016

Doppler tomography

Radboud University

Discs are 11000 – 12000 K

Kupfer et al, 2013

-500

X-Velocity [kms⁻¹]

500

1000

Kupfer et al, 2013

Radboud University

Ongoing accretion? Yes

Kupfer et al, 2013

4.5

CV outbursts, Spiral Arms

Very open, m=2 spiral wave during outburst

Problem: Very low Mach Number required

1000

1

Too hot for comfort

CV outbursts, Spiral Arms

閉

-10 Radboud University

470 Wavelength (Angstrom

Old and New sample

Outflows/Jets during DN outburst

Evolution of outbursts in Black Hole, Neutron Star and White Dwarf systems is globally *the same* (Körding et al., 2008)

 \rightarrow Should lead to (radio) jet launcing from inner disk at start outburst

Outflows/Jets during DN outburst

Oddball or common?

Oddball or common?

Novalike CV are **also** significant emitters! 4 out of 5 detected with VLA

Deanne Coppejans et al., 2015

Spectral indices are all over the place. No clear picture yet.

MeerKAT & MeerLICHT

Situation soon to change: MeerKAT Radio array coming online MeerLICHT optical telescope to be twinned to MeerKAT. Both operational in 2017

MeerKAT:64 dishes , now 24+ operationalMeerLICHT:65cm wide-field (2.7 sqd) telescope at 0.56"/pix

BlackGEM

VA

Synoptic Survey Array at ESO La Silla Phase 1: 3 telescopes, start 2018 Phase 2: 15 telescopes, start 2020(?)

<u>Phase 1:</u>

- 3 wide field telescopes
- 8 square degrees total
- 65cm diameter each
- g=23 in 5 minutes
- ESO La Silla
- Seeing limited (<1")
- u,g,q,r,i,z filter set
 ("PTF South" / "Proto-LSST")

Phase 2:

- Expansion to 15 telescopes
- 40 square degrees ("ZTF South")

<u>Science:</u>

- GW counterparts
- Southern Sloan
- ("PTF South" / "Proto-LSST") Fast Transients & Variables
 - Nearby Universe Survey

