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Dark matter in the Milky Way 
and satellites: Implications for 

CDM and direct detection



Two parts of the talk

1. Extracting constraints on dark matter from dwarf spheroidals

2. Galactic halo models and low mass WIMPs



Opening statements 

• Motivated by astrophysical issues and particle theory there has been 
renewed interest in going beyond collisionless CDM models

• Non-WIMP dark matter models have been developed that predict/explain 
deviations from standard CDM: self-interacting (e.f. Feng, et al. 2010; Loeb & 

Weiner 2011; van den Aarssen 2012; Tulin, Yu, Zurek 2013, Fan et al. 2013), or warm DM

• Are the astrophysical issues due to new dark matter physics, incomplete 
CDM theory, or limits of modern observations? 



Predictions of the standard Cold Dark Matter model

2. Abundance of ‘sub-structure’ 
(sub-halos) in galaxies

1. Density profiles rise towards the centers of galaxies

Navarro-Frenk-White (NFW), 
Einasto model

Most of mass contained in highest-
mass sub-halos
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Mass[Solar mass]

h�annvi ' 3⇥ 10�26 cm3 s�1 (1)

⇢(r) =
⇢s

(r/rs)(1 + r/rs)2
(2)

1

Sub-halos comprise few percent of 
total halo mass

Universal for all halo masses

Springel et al 2008



Problems with the standard Cold Dark Matter model

2. ‘Missing satellites problem’:
Simulations have more dark matter subhalos than there are 
observed dwarf satellite galaxies

Earliest papers: Kauffmann et al. 1993; Klypin et al. 1999; Moore et al. 1999

1. Density of dark matter halos: 
Faint, dark matter-dominated galaxies appear less dense 
than predicted in simulations 

General arguments: Kleyna et al. MNRAS 2003, 2004; Goerdt et al. 
APJ2006;  de Blok et al. AJ 2008, Oh et al. ApJ 2011
Dwarf spheroidals: Gilmore et al. APJ 2007; Walker & Penarrubia et al. APJ 
2011; Angello & Evans APJ 2012



Solutions to the issues in Cold Dark Matter

2. The data is wrong (or interpretation incomplete)
i) Measuring dark matter density profiles of galaxies is difficult 
ii) Counting satellites

a) Many more faint satellites around the Milky Way
b) Milky Way is an outlier  
[Liu et al. 2010, Tollerud et al. 2011, Guo et al. 2011, Strigari & Wechsler ApJ 2012]

 

1. The theory is wrong
i) Not enough physics in theory/simulations 

[Wadepuhl & Springel MNRAS 2011; Parry et al. MRNAS 2011; Pontzen & Governato 
MRNAS 2012; Brooks et al. ApJ 2012]

ii) Cosmology/dark matter is wrong 



Basic expectations

• Self-interacting dark matter

- Halos expected to be more 
spherical, cored central density

• Warm dark matter

- Halos form at later epochs in the 
Universe
- Subhalos have reduced 
concentrations (Lovell et al. 2011) 

6 M. Vogelsberger et al.

Figure 3. Density projections of the Aq-A halo for the different DM models of Table 1 (RefP0-3). The projection cube has a side length of 270 kpc. Clearly,
the disfavoured RefP1 model with a large constant cross section produces a very different density distribution with a spherical core in the centre, contrary to
the elliptical and cuspy CDM halo. Also, substructures are less dense and more spherical in this simulation. The vdSIDM models RefP2 and RefP3 on the
other hand can hardly be distinguished from the CDM case (RefP0).

for the different models. whereas the right panel shows the mean
free path � = (⇢ h�

T

/m

�

i)�1 as a function of radius for the SIDM
models. The dotted, dashed and solid lines show different levels
of resolution, characterised by a particle mass m

p

and a Plummer
equivalent gravitational softening length ✏: Aq-A-5 (m

p

= 3.143⇥
106 M�, ✏ = 684.9 pc), Aq-A-4 (m

p

= 3.929 ⇥ 105 M�, ✏ =
342.5 pc) and Aq-A-3 (m

p

= 4.911⇥104 M�, ✏ = 120.5 pc). The
runs show good convergence for radii larger than 2.8✏ indicated by
the vertical lines.

In the figure we see that RefP1 develops a large core reach-
ing the solar circle (⇠ 7 kpc). This is because the cross section
has no velocity dependence in this case and the particle scattering

works at full strength irrespective of (sub)halo mass. Although this
case is ruled out by current astrophysical constraints (see Section
2.1), it serves as a reference for the effect of a large scattering cross
section at the scales of MW-like haloes in a full cosmological sim-
ulation. On the contrary, RefP2 and RefP3 result in a main halo
whose density profile follows very closely the one from the CDM
prediction of RefP0 down to 1 kpc from the centre. At smaller radii,
where the typical particle velocities are smaller, self-interaction is
large enough to produce a core. The mean free path radial profile
clearly illustrates the radius where collisions are more important
for the different SIDM models, which is around the core radius. It
also highlights the difference between the RefP2 and RefP3 mod-

© 2012 RAS, MNRAS 000, 1–14

Vogelsberger et al 

See also Rocha et al 2013, Talks by A. Peter, H. Yu, W. Dawson

• CDM, and non-CDM models 
going a way towards providing 
more robust, testable predictions



• CDM, and non-CDM models going a way towards providing more 
robust, testable predictions

Modify theory or scrutinize observations?

• For remainder of talk, put aside theoretical models

• Understand observational systematics 

1. Kinematics of dwarf spheroidals (dSphs)
2. Counting satellites 



Kinematics of dwarf spheroidals 



Dark matter in satellite galaxies (dwarf spheroidals)
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✦ Modeled as single stellar population, range of 
dark matter density profiles allowed

Walker et al. 2007

✦ New orbit-based approaches [Breddels et al 2012, 
Jardel and Gebhardt 2012, 2013]

✦ Standard modeling assumes hydrostatic 
equilibrium, spherical symmetry, but not isotropy 
[e.g. Strigari et al 2008, Lokas 2009, Walker et al 2009, 
Richardson & Fairbairn 2013]

✦ Some corrections for non-spherical potentials 
[Hayashi, Chiba 2012, Kowalczyk et al. 2013] 

ESO



CDM-based models of dwarf spheroidals

✦ Full photometric and 
kinematic parameter space is 
very degenerate. 
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Figure 4 Photometric profiles (left) and velocity dispersion profiles (right) for five classical dSphs,
using LCDM-based models for the dark matter potentials. From Strigari et al. [152].

Schwarszchild mass estimates have now been published for three dSphs, Fornax, Sculptor, and
Draco. Using a cored model for the stellar light profile, Jardel and Gebhardt [154] find a mass
within the half-light radius that is consistent with those deduced from moment and distribution
function-based methods. Breddels et al. [155] determine that the mass of Sculptor within 1 kpc is
⇠ 108 M�, which is again in agreement with the above methods. Jardel et al. [156] determine a
lower bound to the mass of Draco of a few times 108 M� within a physical radius of about 500 pc
where kinematics of stars are measured.

4.3. Ultra-faint satellites

Measuring the velocity dispersion, and thus the mass, of ultra-faint satellites poses di↵erent
sets of challenges in comparison to measuring the velocity dispersions of classical satellites. First,
by their very nature, the constituent stars are fainter, with typical target stars having a magnitude
of r = 20 � 21. For a realistic exposure level, the Keck/DEIMOS spectrograph provides a signal-
to-noise on a star of this magnitude of approximately 15 [157]. Second, the measured uncertainties
derived from the stellar spectra are approximately 2� 3 km/s, which, because it is within about a
factor of two of the intrinsic velocity dispersions of the systems, complicates the extraction of the
intrinsic velocity dispersion that arises from the distribution function (Low velocity dispersions at
this level have been measured in globular clusters [158]). Third, the measured line-of-sight velocities
may contain a component that is due to the motion of the star around a binary companion. Early
studies of classical dSphs indicated that this binary contamination was ⇠ 1 � 2 km/s, so it is a
small systematic to classical satellite mass measurements [159]. However, as measurements of low
velocity dispersion globular clusters clearly indicate that binaries do significantly contaminate the
velocity dispersion of bound stellar systems [160], detailed understanding of this e↵ect is required
in ultra-faint satellites.
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Figure 4 Photometric profiles (left) and velocity dispersion profiles (right) for five classical dSphs,
using LCDM-based models for the dark matter potentials. From Strigari et al. [152].

Schwarszchild mass estimates have now been published for three dSphs, Fornax, Sculptor, and
Draco. Using a cored model for the stellar light profile, Jardel and Gebhardt [154] find a mass
within the half-light radius that is consistent with those deduced from moment and distribution
function-based methods. Breddels et al. [155] determine that the mass of Sculptor within 1 kpc is
⇠ 108 M�, which is again in agreement with the above methods. Jardel et al. [156] determine a
lower bound to the mass of Draco of a few times 108 M� within a physical radius of about 500 pc
where kinematics of stars are measured.

4.3. Ultra-faint satellites

Measuring the velocity dispersion, and thus the mass, of ultra-faint satellites poses di↵erent
sets of challenges in comparison to measuring the velocity dispersions of classical satellites. First,
by their very nature, the constituent stars are fainter, with typical target stars having a magnitude
of r = 20 � 21. For a realistic exposure level, the Keck/DEIMOS spectrograph provides a signal-
to-noise on a star of this magnitude of approximately 15 [157]. Second, the measured uncertainties
derived from the stellar spectra are approximately 2� 3 km/s, which, because it is within about a
factor of two of the intrinsic velocity dispersions of the systems, complicates the extraction of the
intrinsic velocity dispersion that arises from the distribution function (Low velocity dispersions at
this level have been measured in globular clusters [158]). Third, the measured line-of-sight velocities
may contain a component that is due to the motion of the star around a binary companion. Early
studies of classical dSphs indicated that this binary contamination was ⇠ 1 � 2 km/s, so it is a
small systematic to classical satellite mass measurements [159]. However, as measurements of low
velocity dispersion globular clusters clearly indicate that binaries do significantly contaminate the
velocity dispersion of bound stellar systems [160], detailed understanding of this e↵ect is required
in ultra-faint satellites.

38

Density Velocity dispersion

✦ Combine jeans-based 
modeling with method of 
isotropic distribution 
functions [Strigari, Frenk, White MNRAS 
2010]

✦ CDM-based NFW models 
fit all dwarf spheroidals



Some particular dSphs

✦ Ursa Minor (66 kpc)
✦ Kinematically cold sub-population of stars (Kleyna et al. 2003, Sanchez-Salcedo & Lora, 
2007; Lora et al. 2012 Pace et al. 2012)

Dark matter in all satellites

Figure 1: The integrated mass of the Milky Way dwarf satellites, in units of solar masses, within
their inner 0.3 kpc as a function of their total luminosity, in units of solar luminosities. The circle
(red) points on the left refer to the newly-discovered SDSS satellites, while the square (blue) points
refer to the classical dwarf satellites discovered pre-SDSS. The error bars reflect the points where
the likelihood function falls off to 60.6% of its peak value.

4

Strigari et al, Nature 2008

✦ Fornax (140 kpc): 
✦ Five globular clusters
✦ Separate sub-populations based on metallicity (Walker & Penarrubia ApJ 2011)

Dark matter in all satellites

Figure 1: The integrated mass of the Milky Way dwarf satellites, in units of solar masses, within
their inner 0.3 kpc as a function of their total luminosity, in units of solar luminosities. The circle
(red) points on the left refer to the newly-discovered SDSS satellites, while the square (blue) points
refer to the classical dwarf satellites discovered pre-SDSS. The error bars reflect the points where
the likelihood function falls off to 60.6% of its peak value.

4

Strigari et al, Nature 2008

✦ Sculptor (80 kpc)
✦ Population of X-ray binaries 
(Maccarone et al 2005)
✦ Separate sub-populations based 
on metallicity (Battaglia et al. 2008)

Dark matter in all satellites

Figure 1: The integrated mass of the Milky Way dwarf satellites, in units of solar masses, within
their inner 0.3 kpc as a function of their total luminosity, in units of solar luminosities. The circle
(red) points on the left refer to the newly-discovered SDSS satellites, while the square (blue) points
refer to the classical dwarf satellites discovered pre-SDSS. The error bars reflect the points where
the likelihood function falls off to 60.6% of its peak value.

4

Strigari et al, Nature 2008



Multiple populations in Sculptor dwarf spheroidal

Kinematic status and mass content of the Sculptor dSph 3

FIG. 2.— Number surface density profile of RGB stars in Scl from
ESO/WFI photometry (squares with error-bars) overlaid to the best-fitting
two component model (solid line) given by the sum of a Sersic (dotted line)
and Plummer (dashed line) profiles. These are obtained from the rescaled
profiles that best fit, respectively, the distribution of RHB and BHB stars
(diamonds and asterisks with error-bars, respectively) in Scl. The Galactic
stellar contamination has been subtracted from each point.
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NMW and N are the expected number of MW and Scl RGB
stars in a distance bin (NT = NMW+N ). fMW is the velocity
distribution of MW stars, which we assume does not change
across the face of Scl, and is derived from the Besançon model
(Robin et al. 2003) selecting stars along the l.o.s. and with
magnitudes and colors similar to the Scl RGB stars. We as-
sume that the Scl velocity distribution is a Gaussian whose
peak velocity v and dispersion σ (the quantities we want to de-
rive) are allowed to vary with projected radius. We derive the
normalization factors,NMW/NT andN/NT directly from the
observed RGB surface density profile and relative foreground
density. To estimate the fraction of MW interlopers in the MR
and MP sub-samples we simply count how many stars with
velocities < vsys − 3σ (i.e. the non-membership region more
populated by foreground stars) are classified as MR and as
MP on the basis of their CaT derived [Fe/H] value. The like-
lihood of observing a set of velocities vi with i = 1, ..., N is
L(v1, ..., vN | v, σ) =

∏N
i=1 P (vi). We maximize the likeli-

hood function in each distance bin and find the corresponding
best-fitting v(R) and σ(R). The errors are determined from
the intervals corresponding to 68.3% probability.
The kinematics of the Scl MR andMPRGB stars are clearly

different (Figure 3a,b): the l.o.s. velocity dispersion profile
of MR stars declines from ∼9 km s−1 in the center to ∼2
km s−1 at projected radius R = 0.5 deg, while MP stars are
kinematically hotter and exhibit a constant or mildly declining
velocity dispersion profile.

4.2. Predicted Velocity Dispersion Profile
The l.o.s. velocity dispersion predicted by the Jeans equa-

tion for a spherical system in absence of net-streaming mo-

FIG. 3.— l.o.s. velocity dispersion profile (squares with errorbars), from
rotation-subtracted GSR velocities, for the MR (a), MP (b) and all (c) RGB
stars in Scl. The lines show the best-fitting pseudo-isothermal sphere (solid)
and NFW model (dashed) in the hypothesis of β = βOM. Panel c) shows
that the best-fitting pseudo-isothermal sphere with β = βOM (solid) and the
NFW model with β =const (dashed) are statistically indistinguishable.
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where R is the projected radius (on the sky), r is the 3D
radius. The l.o.s. velocity dispersion depends on: the mass
surface density Σ∗(R) and mass density ρ∗(r) of the tracer,
which in our case are the MR and the MP RGB stars; the
tracer velocity anisotropy β, defined as β = 1− σ2

θ/σ2
r , which

we allow to be different for MR and MP stars; the radial ve-
locity dispersion σr,∗ for the specific component, which de-
pends on the total mass distribution (for the general solution
see Battaglia et al. 2005).
We consider two DM mass models: a pseudo-isothermal

sphere, typically cored, (see Battaglia et al. 2005), and an
NFW profile, cusped (Navarro, Frenk & White 1996). Since
the contribution of the stars to the total mass of the sys-
tem is negligible for reasonable stellar M/L ratios, we do
not consider it further. As β is unknown we explore two
hypotheses: a velocity anisotropy constant with radius, and
an Osipkov-Merritt (OM) velocity anisotropy (Osipkov 1979;
Merritt 1985). For the latter profile, the velocity anisotropy
is β = r2/(r2 + r2

a) where ra is the anisotropy radius.

4.3. Results from the Two-Components Mass Modeling
We explore a range of core radii rc for the pseudo-

isothermal sphere (rc = 0.001, 0.05, 0.1, 0.5, 1 kpc) and
a range of concentrations c for the NFW profile (c =
20, 25, 30, 35). By fixing these, each mass model has two
free parameters left: the anisotropy and the DM halo mass
(enclosed within the last measured point for the isothermal
8 We checked that the assumptions of sphericity and absence of streaming

motions have a negligible effect on the results: the observed l.o.s. velocity
dispersion profiles derived adopting circular distance bins and not subtract-
ing rotation are consistent at the 1σ level in each bin with the observed l.o.s.
velocity dispersion profile derived adopting elliptical binning and by subtract-
ing the observed rotation signal (see B07)
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sphere, typically cored, (see Battaglia et al. 2005), and an
NFW profile, cusped (Navarro, Frenk & White 1996). Since
the contribution of the stars to the total mass of the sys-
tem is negligible for reasonable stellar M/L ratios, we do
not consider it further. As β is unknown we explore two
hypotheses: a velocity anisotropy constant with radius, and
an Osipkov-Merritt (OM) velocity anisotropy (Osipkov 1979;
Merritt 1985). For the latter profile, the velocity anisotropy
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a) where ra is the anisotropy radius.

4.3. Results from the Two-Components Mass Modeling
We explore a range of core radii rc for the pseudo-

isothermal sphere (rc = 0.001, 0.05, 0.1, 0.5, 1 kpc) and
a range of concentrations c for the NFW profile (c =
20, 25, 30, 35). By fixing these, each mass model has two
free parameters left: the anisotropy and the DM halo mass
(enclosed within the last measured point for the isothermal
8 We checked that the assumptions of sphericity and absence of streaming

motions have a negligible effect on the results: the observed l.o.s. velocity
dispersion profiles derived adopting circular distance bins and not subtract-
ing rotation are consistent at the 1σ level in each bin with the observed l.o.s.
velocity dispersion profile derived adopting elliptical binning and by subtract-
ing the observed rotation signal (see B07)

Metal Rich (MR) and Metal Poor (MP) population 
[Battaglia et al 2008]



• Walker & Penarrubia (ApJ 
2011) find that multiple 
populations are inconsistent with 
an NFW profile

• Agnello & Evans (ApJ 
2012) use projected virial 
theorem to rule out NFW 
profile

A Virial Core in Sculptor 3

Figure 1. Left: Virial stripes for the two stellar populations in Sculptor in a cusped NFW potential, including the self-gravity of the stellar
populations (Υ! = 8). Purple shows the metal-rich population, blue the metal-poor population. In each stripe, the central line is the mean value
of log10(ρ0), whilst the median and outer lines follow the 1σ and 2σ deviations. Center and Right: Virial stripes for the two stellar populations
in a NFW potential with small core, without (Υ! = 0) and with (Υ! = 8) self-gravity.

ε = rc/rs rs [in kpc] rs [in kpc] rs [in kpc]
(Υ! → 0) (Υ! = 4) (Υ! = 8)

1 0.72 1.06 1.23
0.5 0.94 1.40 1.54
0.25 1.2 1.92 2.20
0.125 1.6 2.88 3.28
0.0625 2.4 4.48 4.96

Table 1
Minimum rs for two-sigma overlapping of the virial stripes.

Hence, a necessary condition for a NFW halo to support two
stellar populations with Plummer profiles is

(

σ0,r

σ0,p

)2

> 2
(

Rh,r
Rh,p

)

. (14)

This is identical to eq (22) of Amorisco & Evans (2012a),
derived under different assumptions. If, instead of Plummer
profiles, exponential laws are used to fit the surface brightness
profiles, then the numerical factor becomes 1.9 instead of 2 in
eqn (11). The analogue of eqn (13) is unchanged, so that the
necessary condition for an NFW halo to support two stellar
populations with exponential surface brightness profiles is

(

σ0,r

σ0,p

)2

> 1.9
(

Rh,r
Rh,p

)

. (15)

Using the best-fitting values provided above for Sculptor, it is
immediate to check that the NFW potential is ruled out. Note
that the constraints are simply the requirement that there is a
NFW model with rs < ∞. This is a much looser constraint
than requiring consistency with an NFW model with a con-
centration c ≈ 20, as predicted by cold dark matter theories.

3.2. The Virial Stripes
The simple results already suggest that the energetics of the

two populations are inconsistent with an NFW profile. How-
ever, it is prudent to confirm this result numerically, discard-
ing some of the simplifying assumptions made above.
Since the measured profiles come with errors, we operate

in the following manner. For each value of rs, we compute ρ0
separately for the two populations for many different photo-
metric (8) and kinematic (9) profiles. We weight each result
with the likelihood of the fit. Then, varying rs produces a
virial stripe for each population in the (ρ0, rs)-plane. If the
two stripes overlap at 2σ at a particular rs, then the model for
the potential is plausible at the 2σ level. Nothing prevents us
from including the contribution of the luminous tracers to the
potential as well. The virial equations then depend also on

the stellar mass-to-light ratio Υ!, which may be different for
the two populations. The projected potential energy Wlos has
a contributionWdm from the dark component and a correction
Wsel f from the two luminous ones. For Plummer profiles, we
have for the i−th population:

Wsel f ,i = π
2Gµ0,iRh,i

∑

j
Υ!, jµ0, jR2h, jw

(

Rh,i/Rh, j
)

, (16)

with

w(x) =
x3

[

(5x2 + 3)K(1 − x2) − (x2 + 7)E(1 − x2)
]

3(1 − x2)3
, (17)

where K,E are complete elliptic integrals and Υ!, j is the lu-
minous mass-to-light ratio of the j−th population. As the µ0, j
are given by number counts and not directly by luminosities,
a common rescaling is applied to both populations such that
the total luminosity is fixed at the observed value (taken from
table 6 in Irwin & Hatzidimitriou 1995).
The leftmost panel of Figure 1 shows the virial stripes for

the two populations in Sculptor, excluding and including the
effects of the self-gravity for the luminous component. The
two stripes never overlap at the 2σ level. This confirms the
result deduced from our simple argument in the previous sec-
tion: there is no NFW halo compatible with the kinetic ener-
gies of the two stellar components in Sculptor. The center and
rightmost panels of Figure 1 show the virial stripes when the
dark halo density is the simplest cored analogue of the NFW
halo, namely

cNFW = ρ0

(ε2 + r2/r2s )1/2(1 + r2/r2s )
. (18)

In this case, the stripes do overlap at the 2σ level provided the
core radius rc ≡ rsε is at least 150 pc, if the self-gravity of
the stellar populations is neglected. Incorporating self-gravity
causes the core radius to increase somewhat, as we see in
Table 1. This shows how the minimum rs for 2σ overlap
varies with changing Υ! for different models. The first col-
umn (Υ! → 0) stands for models in which the self-gravity of
the stars is omitted. Since both half-light radii are smaller or
equal to rs in the dark matter only case, adding self-gravity is
expected to yield larger cores, as in fact is confirmed by the
results in the Table.

4. DISCUSSION AND CONCLUSIONS
The arguments in this Letter show that the kinematics of

multiple populations in dSphs provide a substantial challenge
to the predictions of cold dark matter cosmogonies. In the
case of one of the best studied dSphs, Sculptor, there is no
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Mass estimators may be used to determine dark matter masses within 
half-light radii of galaxies [Walker et al. 2009, Wolf et al. 2009] 



• Construct generalized model of photometry and kinematics of dSphs

Multiple populations in Sculptor dwarf spheroidal

• NFW profiles are consistent with the multiple populations

Do the multiple stellar populations in the Sculptor dwarf spheroidal rule out cold dark matter? 3
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Figure 1. 68% c.l. and 90% c.l. contours for (ρs, rs) (left) and (M200 −Vmax) (right) from an analysis that fits to both the photometry
and the kinematics of the different populations. For both the MR and MP population, we use the velocity anisotropy profile of the form
Equation 3.
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Figure 3. Upper panels: From left to right, the photometry of the MP, MR populations, and the velocity dispersions of the populations for
the set of parameters that maximize the likelihood. In the velocity dispersion figure, the upper data and curve is for the MP population,
and the bottom data and curve is for the MR population. The parameters for these curves are given above the horizontal line in Table 1.
Lower panels: Same as upper three panels, except now assume the variable β(r) model in Equation 3. The parameters of the curves are
given below the horizontal line in Table 1. The data is from (Battaglia et al. 2008)
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• Radial orbits in the outer region of the metal rich population 

• Mild cusp in the three-dimensional stellar density profile 

• Forthcoming HST observations provide astrometry < 10 km/s 
(almost the projected SIM sensitivity, e.g. Strigari et al. 2007)

Testable predictions

• Does this analysis translate to measurements of low surface 
brightness galaxies? [Simon et al. 2005, Kuzio de Naray et al. 2008, Oh 
et al. 2011]



Counting satellites



Brighter galaxies 
[Busha et al 2009]

Are we missing massive dark subhalos?

✦ Cold dark matter predicts dozens of 
‘dark’ satellites more massive than the 
dwarf spheroidals 
(‘Too big to fail problem’  Boylan-Kolchin et 

al. 2011)

Luminosity-mass mapping
Inhomogeneous Reionization and Satellites Galaxies 3

vast majority of the ∼ 2500 potential satellite galaxies; for
these low-mass halos, all star formation must happen before
zreion. With this in mind, we can define a subhalo as being a
satellite galaxy using a two parameter model: A subhalo must
grow to a threshold mass, Mt, above which HI cooling will
allow star formation, before the host halo reionizes at zreion in
order to host a satellite.
While we demonstrate the effects of varying both param-

eters in the next section, the work of Abel et al. (2002) uses
high resolution AMR simulations to model the formation of

the first stars and indicates that we anticipate Mt ≈ 106 −

107h−1M!. It is important to note that this process of hy-
drogen cooling simply defines a minimum mass of the pop-
ulation of the dark matter subhalos that could host satellite
galaxies. However, this work predicts the stars forming in
these halos to be very massive and short–lived. As such
these very first star forming halos cannot be the direct pro-
genitors of Milky Way satellites, which are observed to be
metal-enriched objects with stars presumably of masses less
than a solar mass. More relevant here are the calculations of
Wise & Abel (2008), who followed the build up of halos up
to the masses when they start cooling via Lyman-alpha from
neutral hydrogen. They included the radiative as well as the
supernova feedback from the first generation of massive stars.
The short-lived sources keep ionizing the baryonic material
in the halos they form in, as well as their surroundings. How-
ever, as they turn off, material can cool again and repopulate
the dark matter halos. So while the baryon fraction (Fig. 4 in
Wise & Abel 2008) fluctuates and decreases at times to as lit-
tle as 10%, star formation can continue as long as no sustained
external UV flux sterilizes the halo. The latter case severely
limits star formation and has been discussed many time in the
literature (e.g., Babul & Rees 1992; Thoul & Weinberg 1996;
Kepner et al. 1999; Dijkstra et al. 2004). It seems clear then
from the limited guidance we have from numerical simula-
tions that most Milky Way satellite halo progenitors experi-
encedmost of their star formation before they are permanently
ionized.
Once we have identified satellite galaxies in the simula-

tion, we must assign magnitudes to them in order to make
direct comparisons with observations and to account for ob-
servational completeness effects. This is done using two
methods. First, we use a halo abundance matching method
(Kravtsov et al. 2004a; Blanton et al. 2008). Here, luminosi-
ties are assigned to halos by assuming a one-to-one corre-
spondence between n(< MV ), the observed number density
of galaxies brighter than Mv, with n(> vmax), the number
density of simulated halos with maximum circular veloci-
ties larger than vmax. For the distribution of magnitudes, we
use the double-Schechter fit of Blanton et al. (2005) for low
luminosity SDSS galaxies in the g− and r−bands down to
Mr = −12.375. The vmax values are taken from the halo catalog
of a 160 Mpc/h simulation complete down to vmax ≈ 90km/s.
In order to extrapolate this to lower circular velocities, we
calculate a power-law fit to the low end of the dn/dvmax func-
tion. The resulting correspondence is shown in Figure 1 for
the r−, g−, andV−bands (red, green, and black curves). TheV
band magnitudes are calculated using the transformationV =
g − 0.55(g− r) − 0.03 from Smith et al. (2002). This method
implicitly assumes that all galaxies have average color. Since
the data from Blanton et al. (2005) is not deep enough to map
onto the dwarf galaxy distribution, we use a power law to ex-
trapolate the MV (vmax) relation to lower magnitudes. For the

10 100
Vmax
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−10
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−20

M
ag

FIG. 1.— The relationship between magnitude and vmax for the r−, g−, and
V− bands using abundance matching (solid red, green and black lines). The
dashed lines show power law fits to the low-luminosity end.

V−band, we get

MV −5log(h) = 18.2−2.5log

[

( vmax

1km/s

)7.1
]

. (1)

When selecting the appropriate vmax for assigning a luminos-
ity, we follow the method of Conroy et al. (2006) and choose
the peak vmax over the trajectory of the subhalo for subhalos

that eventually cross the 105K post-reionization star forming
threshold. For subhalos that never reach this threshold, we use
the value of vmax at zreion. In both cases, this then corresponds
roughly to the mass the halo had at the redshift they stopped
rapidly forming stars.
The appeal of this method is that we are able to ignore

much of the poorly understood (and poorly simulated) physics
of galaxy formation using a statistical method that has been
shown to, on average, reproduce a wide variety of observ-
able properties for moremassive galaxies (Conroy et al. 2006;
Conroy & Wechsler 2009), as well as some properties of
dwarf galaxies down to vmax ∼ 50km/s (Blanton et al. 2008).
It is still unclear how this method will fare at lower masses;
it must break down for small halos once they no longer host
one galaxy on average. If this transition is sharp, however,
it may be a reasonable approximation for most of the mass
range where halos host galaxies.
As a second approach for assigning magnitudes, we use a

toy model to predict the star formation rate and stellar mass
of a satellite combined with the stellar population synthesis
(SPS) code of Bruzual & Charlot (2003)3. Here, we again as-
sume that star formation begins when the satellite first crosses
the mass threshold, Mt, and ends at the reionization time,
zreion. During this period, the star formation rate is set by the
dark matter mass of the subhalo,

SFR =

{

ε
(

fcoldgas
MDM

1 M!

)α

ifMDM >Mt, z> zreion

0 otherwise
(2)

where fcoldgas is the fraction of cold gas in the halo, and
α and ε are free parameters. This is similar to model 1B
of Koposov et al. (2009), with a couple of key differences.
First, we impose a hard truncation of star formation at the
epoch of reionization, something they only consider using

3 http://www.cida.ve/ bruzual/bc2003
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Dwarf spheroidals around other ‘Milky Ways’

✦ Going fainter difficult because 
unreliable distances to 
satellites 

✦ However it is the most 
important regime for the 
satellite abundance issue

Faintest satellites in SDSS

•Very few systems with spectra 
for Fornax-like satellites

•About 1,000 systems with 
photometric redshifts for Fornax-
like satellites 

✦ Can only use bright, nearby 
‘Milky Ways’

• About 5% of ‘Milky Ways’ have 
‘Magellanic Clouds’ [Liu et al. 2010, Lares 
et al. 2011; James & Ivory 2011; Tollerud et al. 
2011; Guo et al. 2011; Robotham et al. 2012]



Satellites of other ‘Milky Ways’

Cosmic Abundance of Classical Satellites
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Figure 2. Left: Mean number of satellites brighter than ∆m magnitudes fainter than the primary galaxy, assuming primaries within
±0.25 magnitudes of the Milky Way. Blue diamonds are determined from the spectroscopic sample of satellites (method 1), black squares
from the photometric sample (method 3). The solid errors are the uncertainty on the mean, the thin, dashed errors are the intrinsic scatter
(σs from Eq. 3). The arrows indicate 90% c.l. upper limits. The red triangles indicate the Milky Way satellites. Right: Same as left, except
for primaries within ±0.25 magnitudes of M31.

MW-like primaries and ∆m = [4, 5], we find a mean in-
trinsic scatter of σs = [0.56±0.04, 0.89±0.19], where the
errors represent one-sigma uncertainties as above. The
best-fitting values for σs are shown as thin, dashed er-
ror bars in Fig. 2 for ∆m ≤ 7. Via the method out-
lined in Liu et al. (2011), we are also able to estimate
the full probability distribution down to ∆m = 5; here
we find that the probability to obtain [0, 1, 2, 3] satel-
lites with ∆m < 5 is [0.59, 0.25, 0.11, 0.03, 0.02]. Down
to fainter magnitudes, the spectroscopic sample is too
sparse to measure the full satellite probability distribu-
tion. These results indicate that there is still substantial
intrinsic scatter in the satellite population, even at the
brightest scales.

5. COMPARISON TO PREVIOUS RESULTS

There have been several recent analyses on the pop-
ulation of bright satellites around MW-analog galaxies
along the lines presented in this paper. It is instructive
to compare the results presented here to these previous
analyses.

Guo et al. (2011) used SDSS DR7 to construct the lu-
minosity function of satellites down to the magnitude
scale of Fornax, correcting for the incompleteness of
SDSS. These authors used best-fitting photometric red-
shifts from DR7 to eliminate obvious background galax-
ies. Our analysis differs from these authors in that we
utilize both DR8 imaging and a maximum likelihood
method that incorporates full photometric redshift prob-
ability distributions. We also directly quantify the bias
in abundance counts for faint satellites that is incurred
when utilizing available photometric redshifts. Via some-
what different methods for cutting background galaxies,
Lares et al. (2011) use DR7 data to obtain a mean num-
ber of satellites down to the magnitude of Sagittarius for
projected radii ! 100 kpc. As we discuss above, we have

verified that our results are consistent with these authors
over the radial range considered, and further that we do
not incur a significant bias by including galaxies within
projected radii < 100 kpc. Tollerud et al. (2011) utilize
the DR7 volume-limited spectroscopic sample and find
that ∼ 40% of MW-analogs have satellites brighter than
the LMC within 250 kpc. James & Ivory (2011) use Hα
narrow band imaging to search for start forming galax-
ies around 143 spiral galaxies like the MW, and find that
nearly two-thirds do not have satellites that resemble the
Magellanic Clouds. These latter two results are consis-
tent with the spectroscopic results that we present for
bright satellites.

6. DISCUSSION AND CONCLUSION

We have used DR8 photometric redshift data to limit
the mean number of satellites around MW-analog galax-
ies down to ten magnitudes fainter than the MW. At
least down to the scale of Sagittarius, the results indi-
cate that the MW is not a significant statistical outlier
in its number of bright, classical satellites.
Our 90% c.l. upper bound of " 13 satellites brighter

than the Fornax dSph already places a strict bound on
the efficiency of galaxy formation at the dSph luminos-
ity scale. This is particularly true considering that there
are anywhere from ∼ 25 − 75 dark matter subhalos in
the Aquarius simulations (Springel et al. 2008) that have
present-day circular velocities greater than that of For-
nax. However, it is very interesting to note that the ob-
servational result we present is perfectly consistent with
abundance matching extrapolations for the satellite lu-
minosity function, which predict ∼ 1.2, 1.7 satellites for
magnitude differences ∆m = 7, 10 (Busha et al. 2011).
This does not guarentee that such models will have the
correct velocity function; in fact it appears increasingly
difficult to simultaneously match both the luminosities
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Cosmic Abundance of Classical Satellites

6 Strigari and Wechsler

2 4 6 8 10
Magnitudes fainter than primary (Δ m)

0.1

1.0

10.0

100.0

M
ea

n
 s

at
el

li
te

 n
u

m
b

er
 <

 Δ
 m

Milky Way magnitude primaries

LMC SMC
Sgr

Fnx Leo I

2 4 6 8 10
Magnitudes fainter than primary (Δ m)

0.1

1.0

10.0

100.0

M
ea

n
 s

at
el

li
te

 n
u

m
b

er
 <

 Δ
 m

M31 magnitude primaries

M33
M32

NGC 205
NGC 185

NGC 147 AND VII

Figure 2. Left: Mean number of satellites brighter than ∆m magnitudes fainter than the primary galaxy, assuming primaries within
±0.25 magnitudes of the Milky Way. Blue diamonds are determined from the spectroscopic sample of satellites (method 1), black squares
from the photometric sample (method 3). The solid errors are the uncertainty on the mean, the thin, dashed errors are the intrinsic scatter
(σs from Eq. 3). The arrows indicate 90% c.l. upper limits. The red triangles indicate the Milky Way satellites. Right: Same as left, except
for primaries within ±0.25 magnitudes of M31.

MW-like primaries and ∆m = [4, 5], we find a mean in-
trinsic scatter of σs = [0.56±0.04, 0.89±0.19], where the
errors represent one-sigma uncertainties as above. The
best-fitting values for σs are shown as thin, dashed er-
ror bars in Fig. 2 for ∆m ≤ 7. Via the method out-
lined in Liu et al. (2011), we are also able to estimate
the full probability distribution down to ∆m = 5; here
we find that the probability to obtain [0, 1, 2, 3] satel-
lites with ∆m < 5 is [0.59, 0.25, 0.11, 0.03, 0.02]. Down
to fainter magnitudes, the spectroscopic sample is too
sparse to measure the full satellite probability distribu-
tion. These results indicate that there is still substantial
intrinsic scatter in the satellite population, even at the
brightest scales.

5. COMPARISON TO PREVIOUS RESULTS

There have been several recent analyses on the pop-
ulation of bright satellites around MW-analog galaxies
along the lines presented in this paper. It is instructive
to compare the results presented here to these previous
analyses.

Guo et al. (2011) used SDSS DR7 to construct the lu-
minosity function of satellites down to the magnitude
scale of Fornax, correcting for the incompleteness of
SDSS. These authors used best-fitting photometric red-
shifts from DR7 to eliminate obvious background galax-
ies. Our analysis differs from these authors in that we
utilize both DR8 imaging and a maximum likelihood
method that incorporates full photometric redshift prob-
ability distributions. We also directly quantify the bias
in abundance counts for faint satellites that is incurred
when utilizing available photometric redshifts. Via some-
what different methods for cutting background galaxies,
Lares et al. (2011) use DR7 data to obtain a mean num-
ber of satellites down to the magnitude of Sagittarius for
projected radii ! 100 kpc. As we discuss above, we have

verified that our results are consistent with these authors
over the radial range considered, and further that we do
not incur a significant bias by including galaxies within
projected radii < 100 kpc. Tollerud et al. (2011) utilize
the DR7 volume-limited spectroscopic sample and find
that ∼ 40% of MW-analogs have satellites brighter than
the LMC within 250 kpc. James & Ivory (2011) use Hα
narrow band imaging to search for start forming galax-
ies around 143 spiral galaxies like the MW, and find that
nearly two-thirds do not have satellites that resemble the
Magellanic Clouds. These latter two results are consis-
tent with the spectroscopic results that we present for
bright satellites.

6. DISCUSSION AND CONCLUSION

We have used DR8 photometric redshift data to limit
the mean number of satellites around MW-analog galax-
ies down to ten magnitudes fainter than the MW. At
least down to the scale of Sagittarius, the results indi-
cate that the MW is not a significant statistical outlier
in its number of bright, classical satellites.
Our 90% c.l. upper bound of " 13 satellites brighter

than the Fornax dSph already places a strict bound on
the efficiency of galaxy formation at the dSph luminos-
ity scale. This is particularly true considering that there
are anywhere from ∼ 25 − 75 dark matter subhalos in
the Aquarius simulations (Springel et al. 2008) that have
present-day circular velocities greater than that of For-
nax. However, it is very interesting to note that the ob-
servational result we present is perfectly consistent with
abundance matching extrapolations for the satellite lu-
minosity function, which predict ∼ 1.2, 1.7 satellites for
magnitude differences ∆m = 7, 10 (Busha et al. 2011).
This does not guarentee that such models will have the
correct velocity function; in fact it appears increasingly
difficult to simultaneously match both the luminosities
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• Down to limits of modern surveys, 
Milky Way is ‘normal’ 
[Guo et al. MNRAS 2012; Strigari & Wechsler 
ApJ 2012]

• Significant improvement very soon 
with new larger scale surveys (GAMA, 
DES, LSST...)

• Is the solution to satellites issue 
likely due to incomplete theory?



Final thoughts on Satellites/TBTF Issue 

• Are we too worried about one galaxy? 

• Possibly significant variation in subhalo properties for Milky Way 
mass hosts (Purcell & Zentner JCAP 2012)

• Given uncertain kinematics dSphs are may still be consistent 
with subhalos with Vmax > 30 km/s

• Mass of the Milky Way? (Wang et al. 2012; Sohn et al. 2013; Last year’s KITP 
dwarf workshop) 

• New theoretical ideas (Brooks et al 2013)



2. Galactic halo models and low mass WIMPs



On the WIMP Velocity distribution

• Experiments and interpretations used the ``standard halo 
model” (Lewin & Smith, etc)

• Two issues with this assumption:

1. Does not analytically correspond to an NFW/Einsto profile

2. Several dark matter-only simulations find different distributions

• Differences are very significant for interpretation of low mass 
WIMP results 



Are these results consistent? 

• Depends on the Vmin parameter space that is probed [Talk by P. Fox]

4

served in Detector 3 of Tower 5. These detectors were
near the middle of their respective tower stacks. Fig. 2
illustrates the distribution of events in and near the sig-
nal region of the WIMP-search data set before (top) and
after (bottom) application of the phonon timing criterion.
Fig. 3 shows an alternate view of these events, expressed
in “normalized” versions of yield and timing that are
transformed so that the WIMP acceptance regions of all
detectors coincide.

After unblinding, extensive checks of the three candi-
date events revealed no data quality or analysis issues
that would invalidate them as WIMP candidates. The
signal-to-noise on the ionization channel for the three
events (ordered in increasing recoil energy) was measured
to be 6.7�, 4.9�, and 5.1�. A study on possible leakage
into the signal band due to 206Pb recoils from 210Po de-
cays found the expected leakage to be negligible with
an upper limit of < 0.08 events at the 90% confidence
level. The energy distribution of the 206Pb background
was constructed using events in which a coincident ↵ par-
ticle was detected in a detector adjacent to one of the 8
Si detectors used in this analysis.

This result constrains the available parameter space
of WIMP dark matter models. We compute upper lim-
its on the WIMP-nucleon scattering cross section using
Yellin’s optimum interval method [25]. We assume a
WIMP mass density of 0.3 GeV/c2/cm3, a most probable
WIMP velocity with respect to the galaxy of 220 km/s,
a mean circular velocity of Earth with respect to the
galactic center of 232 km/s, a galactic escape velocity of
544 km/s [26], and the Helm form factor [27]. Fig. 4
shows the derived upper limits on the spin-independent
WIMP-nucleon scattering cross section at the 90% con-
fidence level (C.L.) from this analysis and a selection of
other recent results. The present data set an upper limit
of 2.4⇥ 10�41 cm2 for a WIMP of mass 10 GeV/c2. We
are completing the calibration of the nuclear recoil energy
scale using the Si-neutron elastic scattering resonant fea-
ture in the 252Cf exposures. This study indicates that our
reconstructed energy may be 10% lower than the true re-
coil energy, which would weaken the upper limit slightly.
Below 20 GeV/c2 the change is well approximated by
shifting the limits parallel to the mass axis by ⇠ 7%. In
addition, neutron calibration multiple scattering e↵ects
improve the response to WIMPs by shifting the upper
limit down parallel to the cross-section axis by ⇠ 5%.

A model of our known backgrounds, including both
energy and expected rate distributions, was constructed
for each detector and experimental run for each of the
three backgrounds considered: surface electron recoils,
neutron backgrounds, and 206Pb recoils. Simulations of
our background model yield a 5.4% probability of a sta-
tistical fluctuation producing three or more events in our
signal region.

This model of our known backgrounds was used to in-
vestigate the data in the context of a WIMP+background
hypothesis. We performed a profile likelihood analysis,
including the event energies, in which the background
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FIG. 4. Experimental upper limits (90% confidence level) for
the WIMP-nucleon spin-independent cross section as a func-
tion of WIMP mass. We show the limit obtained from the
exposure analyzed in this work alone (blue dotted line), and
combined with the CDMS II Si data set reported in [23, 28]
(blue solid line). Also shown are limits from the CDMS
II Ge standard [17] and low-threshold [29] analysis (dark
and light dashed red), EDELWEISS low-threshold [30] (long-
dashed orange), XENON10 S2-only [31] (dash-dotted green),
and XENON100 [32] (long-dash-dotted green). The filled re-
gions identify possible signal regions associated with data
from CoGeNT [33] (dashed yellow, 90% C.L.), DAMA/LIBRA
[10, 34] (dotted tan, 99.7% C.L.), and CRESST [12, 35] (dash-
dotted pink, 95.45% C.L.) experiments. 68% and 90% C.L.
contours for a possible signal from these data are shown in
light blue. The blue dot shows the maximum likelihood point
at (8.6 GeV/c2, 1.9⇥ 10�41 cm2).

rates were treated as nuisance parameters and the WIMP
mass and cross section were the parameters of interest.
We profiled over probability distribution functions of the
rate for each of our known backgrounds. The highest like-
lihood was found for a WIMP mass of 8.6 GeV/c2 and
a WIMP-nucleon cross section of 1.9⇥10�41 cm2. The
goodness-of-fit test of this WIMP+background hypoth-
esis results in a p-value of 68%, while the background-
only hypothesis fits the data with a p-value of 4.5%.
A profile likelihood ratio test finds that the data favor
the WIMP+background hypothesis over our background-
only hypothesis with a p-value of 0.19%. Though this
result favors a WIMP interpretation over the known-
background-only hypothesis, we do not believe this result
rises to the level of a discovery.

Fig. 4 shows the resulting best-fit region from this
analysis (68% and 90% confidence level contours) on
the WIMP-nucleon cross-section vs. WIMP mass plane.
The 90% C.L. exclusion regions from CDMS II’s Ge
and Si analyses and EDELWEISS low-threshold analy-
sis cover part of this best-fit region, but the results are
overall statistically compatible. There is much stronger
tension with the upper limits from the XENON10 and

• Ways to make results consistent: 
1) Experimental details (R. Lang talk)
2) Particle model (e.g. Isospin-violating DM, e.g. Feng & Kumar 2008)
3) Galactic halo model (A. Green talk)

CDMS-II



Applications to ``vmin” technique to CDMS, XENON100

• Small number of CDMS-II events, threshold, and energy resolution, complicate 
interpretation of overlap
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Figure 1. CDMS-II-Si events (crosses), interpreted as a measurement of the unmodulated WIMP
rate ⌘

0

, compared to the most stringent upper bounds on ⌘
0

, for WIMPs with mass m = 9 GeV/c2,
spin-independent interactions with nuclei, and (left) isospin-conserving fn/fp = 1 or (right) isospin-
violating fn/fp = �0.7 couplings. For the isospin-conserving couplings, there is tension between the
CDMS-II-Si events and the XENON100 limits, and a detailed statistical analysis would be necessary
to quantify their degree of compatibility. For isospin-violating couplings, the CDMS-II-Si events are
compatible with all bounds (and the most stringent bound between 400 and 800 km/s in v

min

is from
the CDMS-II-Si data themselves).

energy resolution we use the Poisson fluctuation formula and a Gaussian single photoelectron
resolution with �

PMT

= 0.5 PE [30].
XENON10. We take the data from Ref. [12] and compute an upper limit following the

procedure in Ref. [20]. (We corrected a mistake in the computer program that a↵ected the
conversion from recoil energy to number of photoelectrons; after this correction, the limit is
more stringent.) Again for the energy resolution we use the Poisson fluctuation formula and
single photoelectron Gaussian resolution with �

PMT

= 0.5 PE. The exposure is 1.2 kg ⇥12.5
days. We consider the 32 events within the 1.4 keV-10 keV acceptance box in the Phys. Rev.
Lett. article (not the arXiv preprint).

SIMPLE. We consider only the Stage 2 [16], a C
2

ClF
5

detector with an exposure of
6.71 kg days, one observed event above 8 keV, and an expected background of 2.2 ± 0.30
events. We use the Feldman-Cousins method [31] to place an upper limit of 3.16 expected
signal events for a 2.2 expected background and 1 observed event, at the 95% confidence
level.

CRESST-II.We take the histogram of events in Fig. 11 of Ref. [9]. The electromagnetic
background is modeled as one e/� event in the first energy bin of each module. The exposure
is 730 kg days. We assume a maximum WIMP velocity in the Galaxy such that W recoils
can be neglected. A light WIMP will scatter however on both Ca and O, thus complicating
the issue of associating to any range in detected energy [E0

1

, E0
2

] a range in v
min

since the
correspondence depends on the target mass. To do this, we follow the procedure described
in Ref. [20].

4 Results

Figs. 1 to 5 show our results for a WIMP with spin-independent interactions and either
isospin-conserving couplings (fn/fp = 1) or isospin-violating couplings (fn/fp = �0.7). In
all the figures, the vertical axis shows the quantity ⌘̃c2, which has units of inverse days.
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Figure 2. The CDMS-Si and XENON10/100 results translated into vmin-space. The upper panels
show the case m� = 9 GeV for two choices of binning. In the left (right) panel the bin width is 2 keV
(3 keV). The choice of binning does not alter our conclusions. For all the cases considered, the region
of vmin-space probed by CDMS-Si is constrained by XENON10/100.

3 Analysing the experiments in vmin-space

We have seen that many parameters need to be specified before a theoretical prediction for
the number of scattering events in a direct detection experiment can be compared with the
observed number. While a parameter such as the local DM density a↵ects all experiments
in the same way, other parameters can change the number of events in one experiment
while having no impact on another experiment. A useful technique to gain insight into this
involves mapping the experimental result into v

min

-space [35]. If experiments probe di↵erent
regions of this space, they will be a↵ected di↵erently by varying parameters such as the local
escape velocity v

esc

; conversely, if experiments probe the same region of v
min

-space, then
modifying such parameters cannot improve agreement between the experiments. We first
apply this technique in the usual way to astrophysical parameters, before applying it also to
momentum-dependent interactions. Our discussion and notation closely follow [36].

3.1 Varying astrophysical parameters

After substituting the usual parameterisation of the cross-section for spin-independent scat-
tering from Eq. (2.5) into Eq. (2.1), we see that direct detection experiments do not di-

– 6 –

• Simply assume the thresholds reported by CDMS-II, Xenon100

Del Nobile et al. 2013 1304.6183Frandsen et al. 2013 1304.6066



``Cosmological” velocity distribution

• ``Cosmological” VDF: fewer particles in the tail of the distribution, smooth 
fall-off to the escape velocity (e.g. Vogelsberger et al. 2009; Ling et al. 2009; Kuhlen et 
al. 2010; Lisanti, LS, Wacker, Wechsler 2011; Mao et al ApJ 2013; Mao et al 2013)

• Issues with halo sampling, baryons (talks by C. Frenk, R. Wechsler)

VDF of Dark Matter from Simulations 3

Figure 2. The VDF for one representative dark matter halo
in Rhapsody (histogram), along with the best fits using Eq. (1)
with (v0/vesc, p) = (0.13, 0.78) (black, χ2 = 0.59), SHM (blue,
9.67), the double power-law model (cyan, 9.47), the Tsallis model
(green, 1.99), and the analytic VDFs from Eddington’s formula
with isotropic assumption (red dash, 8.48), Osipkov–Merritt (ma-
genta dash, 6.41), and constant β = 1/2 (yellow dash, 11.8). The
y-axis is in log scale in the main figure and linear in the inset.

as q → 1 (Vergados et al. 2008). It was argued that
the Tsallis model provides better fit to simulations with
baryons (Ling et al. 2010), although this conclusion may
be affected by the relatively low resolution of the simu-
lations.
In contrast, our empirical model, Eq. (1), is not based

on a Gaussian distribution but rather on an exponential
distribution. It also has a power-law cut-off in (binding)
energy. Fig. 2 shows the VDF in a simulated halo, along
with the best fit from Eq. (1) and the best fits from other
conventional models. All the best-fit parameters are ob-
tained from the maximum-likelihood estimation in the
range of (0, vesc). The fits using Eq. (1) are statistically
better than other models or the analytic VDFs, espe-
cially around the peak and the tail. We performed the
likelihood-ratio test and found that our model fits sig-
nificantly better for all Rhapsody halos than the SHM
or the double power-law model at all four radii shown in
Fig. 1.
In Fig. 2 we also compare three analytic VDFs. For

the isotropic model shown, the analytic VDF is given
by Eddington’s formula, which gives a one-to-one corre-
spondence between the density profile and the VDF. For
anisotropic systems, one must also model the anisotropy
parameter, defined as β = 1 − (σ2

θ + σ2
φ)/(2σ

2
r), where

σ2 is the variance in each velocity component. There
is currently no analytic VDF whose anisotropy profile
matches that measured in simulations, so we choose three
simple and representative anisotropic models: constant
anisotropy (with β = 0 and 1/2) and the Osipkov–
Merritt model (Osipkov 1979; Merritt 1985). The phase-
space distributions of these models can be determined
numerically (Binney & Tremaine 2008). For all three
cases, we adopt the NFW profile as in Eq. (2), with the
best-fit scale radius. For the Osipkov–Merritt model, we
use the best-fit anisotropy radius. It is shown in Fig. 2
and also suggested by the chi-square test for the models
considered that the analytic VDFs do not describe the
simulated VDF well.
Our VDF model, Eq. (1), consists of two terms: the

exponential term and the cut-off term. The origin of the

the exponential term can be explained by the anisotropy
in velocity space. Fig. 3 shows the distributions, the dis-
persion, and the kurtosis of the velocity vectors along
the three axes of the spherical coordinate. Kurtosis is a
measure of the peakedness of a distribution, defined as
(
∑

i v
4
i )/(

∑

i v
2
i )

2 − 3, where vi is the velocity of the i-th
particle along one axis, and this value is zero for the nor-
mal distribution. The ratios of dispersion between the
three axes are close to one at small radii, and the ratios
increase with radius. The kurtosis, on the other hand,
is in general non-zero and decreases with radius. An
important consequence of the non-zero kurtosis is that
even if the dispersion along the three axes are similar
(anisotropy parameter β ∼ 0), the velocity vectors do
not follow an isotropic multivariate normal distribution
in any coordinate system (even after a local coordinate
transformations). In other words, as long as there exists
either anisotropy or non-zero kurtosis in a certain coordi-
nate, the norms of the velocity vectors will not follow the
Maxwell–Boltzmann distribution. Indeed, Fig. 3 shows
that in the simulations, one always has non-zero kurto-
sis and/or anisotropy. Other simulations also indicate
that the velocity vectors of dark matter particles have
anisotropy (Abel et al. 2011; Sparre & Hansen 2012) and
non-zero kurtosis (Vogelsberger et al. 2009). We further
found that if the ratios of dispersion between the three
axes of a multivariate normal distribution are around 0.2
to 0.6, the norms of those random vectors will follow a
distribution which resembles our model without the cut-
off term, v2 exp(−v/v0). (For a formal discussion on this
topic, see e.g. Bjornson et al. 2009.) This suggests that if
one can find a coordinate system where the distributions
of the velocity components are all distributed normally
(with zero kurtosis), there will be a larger difference be-
tween the dispersion along the three axes in this new
coordinate system than in the spherical coordinate.
The (v2esc − v2)p term in our VDF model introduces a

cut-off at the escape velocity. It further suppresses the
VDF tail more than the exponential term alone does. De-
spite that this cut-off term has the form of a power-law
in (binding) energy, the best-fit values of the parameter
p does not necessarily reflect the “asymptotic” power-
law index k, defined as k = limE→0(d ln f/d ln E), where
f(E) is the (binding) energy distribution function. The
relation between k and the outer density slope has been
studied in the literature (Evans & An 2006; Lisanti et al.
2011). However, because d ln f/d ln E deviates from its
asymptotic value k rapidly as E deviates from zero,
the asymptotic power-law index k could be very differ-
ent from the best-fit power-law index for the VDF tail
(e.g. v > 0.9vesc). Furthermore, the shape of the VDF
power-law tail could be set by recently-accreted subha-
los that have not been fully phase-mixed (Kuhlen et al.
2012), and hence has no simple relation with the density
profile. In high-resolution simulated dark matter halos,
particles stripped off of a still-surviving subhalo are seen
to significantly impact the tail of the VDF. A larger sam-
ple of simulations at higher resolution than we consider
in the current analysis will be needed to further test this
hypothesis.

4. HALO-TO-HALO SCATTER IN VELOCITY
DISTRIBUTIONS
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``Cosmological” velocity distribution

• For reported thresholds, Xenon 100 and CDMS-II Si results are compatible 
with 8.6 GeV WIMP (Mao et al 2013, 1304.6401)

4

FIG. 3. The contours show the probabilities PX (left), PS (middle), and PX ⇥ PS (right), as functions of the VDF parameters
vrms/vesc and p in the region of interests. Color scales on the three plots are all the same. PX is the probability that Exp. X
observes no event, and PS is the probability that Exp. S observes 3 events. Values below 0.05 are excluded with 95 percent
confidence. High values of p can significantly reduce the tension between the two experiments, when compared to the SHM.
See text for details of the mock experiments and other assumptions.

consistent with one another when using the SHM.

In the left panel of Figure 3, we see that Exp. X, which
is strongly ruled out with the Standard Halo Model VDF,
can only reject less than half of the parameter domain
at a 95% confidence level when the VDF is allowed to
vary. On the other hand, Exp. S could still observe three
events, given that PS > 0.05 for almost all v

rms

and p
within the ranges shown on Figure 3. In the right most
panel we also show the joint probability PX ⇥ PS . In
roughly one-third of the parameter domain, the possibil-
ity of Exp. S observing three events and Exp. X observing
none cannot be excluded. In order to exclude this WIMP
model for all possible VDF considered within this do-
main, we find that Exp. X must lower its energy threshold
to at least 5.25 keV, if all other conditions and assump-
tions unchanged. This may be possible with forthcoming
xenon-based experiments [34].

As a reminder, the above analysis does not include the
e↵ect of background noise, the energy cuto↵, the energy
response e�ciency, and the energy resolution of the mock
experiments, and hence caution should be invoked when
drawing strong conclusions about the regarding the re-
lation between XENON100 and CDMS-II experiments.
However, it does clearly motivate a full self-consistent
statistical analysis with a VDF of the form Eq. (1) be-
cause if the dark matter is in fact a light WIMP, a model
for the VDF will be required to translate measurements
into physical parameters of the dark matter particle.

Quantifying Uncertainty from the VDF. — The re-
sults of the above demonstration can be also interpreted
as follows: under the assumption of the WIMP model, if
Exp. S observes three true WIMP events and the Exp. X
observes none, the SHM is ruled out by the experiments,
while some range of our VDF parameter space is still al-
lowed. Within this allowed VDF parameter space, from
the perspective of cosmological simulations is there a sin-

gle preferred set of the VDF parameters that could be
adopted by experimentalists? Unfortunately, there is a
range of uncertainties that impede a simple choice.

Paper I presented a detailed discussion of the sources
of scatter. Here we further distinguish these sources ac-
cording to their contribution to the uncertainties in v

rms

or in p. We find here that v
rms

is largely determined by
r/rs; the uncertainty in this parameter is thus driven by
observational uncertainty in r/rs for the position of the
solar system with respect to the density profile of the
Milky Way. Conservative estimates of the concentration
parameter of the Milky Way imply the region of v

rms

used
in Figure 3; with more optimistic assumptions one can
constrain r/rs 2 [0.32, 0.50] [35]. This will narrow the pa-
rameter range shown in Figure 3 but would not change
our conclusions. It is likely that future data on the mo-
tions of Milky Way halo stars and satellites will be able to
further constrain the density profile of our Galaxy’s halo
to minimize this uncertainty. We note that the present
analysis considers only dark matter simulations; further
study should confirm whether the relationship between
v
rms

and r/rs is impacted by baryonic physics.

The uncertainty in p, on the other hand, at present
appears to be irreducible. The halo-to-halo scatter in p
could originate from the di↵erent intrinsic properties be-
tween halos, but we have not yet found any significant
correlations between p and physical properties of the halo
(even if found, the quantity may not be well-constrained
observationally). In principle, one could ignore the halo-
to-halo scatter if we had a simulation that resembles the
Milky Way halo in every way; however, there would still
be intra-halo scatter due to variation of VDF in vari-
ous angular positions at a fixed radius. In Paper I, we
found that the intra-halo directional scatter is not smaller
than the halo-to-halo scatter. Last but not least, baryons
could also possibly impact the shape of the VDF as char-
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ABSTRACT

We investigate the scatter of the velocity distribution function (VDF) of halos in cosmological simula-
tions and its implications on the direct detection experiments. With the empirical model introduced
in Mao et al. (2013), we demonstrate that the VDF should be described by at least two parameters,
one of which is directly related to the radial position of VDF being measured, and the other describes
a scatter from an unknown source. We show how this scatter will potentially impact the direct de-
tection rate calculation, especially for low WIMP masses, even for a given radial position of our solar
system with respect to the scale radius of the scale radius of the Milky Way.
Keywords: dark matter — galaxy: halo

1. INTRODUCTION

[Some introduction in the experiments context.]
In our previous work (Mao et al. 2013, hereafter Pa-

per I) we proposed a new empirical model for fitting the
VDF, motivated by cosmological simulations. The model
depends on two parameters (v0, p) and its explicitly form
is

f(|v|) =
{

A exp(−|v|/v0)
(
v2esc − |v|2

)p
, 0 ≤ |v| ≤ vesc

0, otherwise,
(1)

In Paper I we also showed that the parameters mainly
depend on the quantity r/rs, the radial position where
the VDF is measured, normalized by the scaled radius
of the density profile of the halo. We also discussed the
origin of this empirical model and also how this model
may impact the detection rate calculation if the scale
radius is unknown. In Figure 4 of Paper I one can see
there is some degeneracy between these two parameters
for a given r/rs. In this follow-up paper, we will address
this degeneracy and how it may impact the detection rate
calculation even for a given r/rs.

2. THE DISTRIBUTION OF THE VDF MODEL
PARAMETERS

In Paper I we noted there is a clear relation between the
two VDF parameters v0 and p for a given r/rs. One then
would ask whether there is some quantity X(v0, p) which
would remain constant for a fixed r/rs. We find this
quantity to be the ratio of the root-mean-square velocity
to the escape velocity, defined as

vrms

vesc
≡ 1

vesc

[∫ vesc

0
dv v4f(v)

]1/2
. (2)

In Figure 1 we show the value of vrms/vesc as a function of
(v0/vesc, p), and one can see that the constant-vrms/vesc
lines basically follow the relation between v0 and p for a
fixed r/rs. Neverthelesss, this is not a surprising result
because the vrms/vesc is physically the ratio of the average
energy to the escape energy, which is directly related to
the relative position in the gravitational potential.

Figure 1. The contour shows the value of vrms/vesc as a function
of (v0/vesc, p), from the VDF model of Eq. 1.

Given that vrms/vesc is determined by r/rs, in which
the uncertainty was claimed to be the most important
source of scatter of VDF in Paper I, does one still need
two parameters to describe the VDF instead of one (as
in the Standard Halo Model)? The answer is yes. In
Figure 2 we show the difference between two VDFs who
give exactly the same value of vrms/vesc, one can see there
is still non-negligible difference between these two VDFs.
Unfortunately, there is no explicit expression of this

”another degree of freedom” of the VDF [coin a name
for it?]. Nevertheless, with cosmological simulations, we
find the halo-to-halo scatter in this degree of freedom
is significant, as shown in Figure 3 and the Figure 4 of
Paper IẆe also find no correlation between this degree of
freedom with any interesting physical quantities [maybe
another plot?], and thus could not put a constraint on
the possible region of the parameter space.

3. IMPLICATIONS FOR DIRECT DETECTION

Although we have little understanding on this degree
of freedom of the VDF, we can still estimate its impact
on the direct detection rate calculation. In Figure 4 we
show the relative event rate as a function of the VDF pa-
rameter p, with corresponding v0 chosen to give a fixed
value of vrms/vesc. We can see that for the CDMS de-

2

halo, and the potential impact of baryonic physics, there
still exist significant uncertainties in the VDF, and hence
in direct detection event rates.

In this paper we explicitly identify the range of the
parameter space described by Eq. 1 that is allowed by
cosmological simulations. We further demonstrate that,
within this well-motivated parameter domain, there is
large range of predicted event rates for a WIMP model
with a fiducial mass of 8.6 GeV, and show that it is pos-
sible to simultaneously explain the CDMS-II, CoGENT,
and XENON100 results by simply by changing from the
SHM to a more cosmologically motivated VDF. This
opens up the intriguing possibility that the tension be-
tween these experiments is resolved by uncertainties in
the Milky Way halo model, and motivates the develop-
ment of a stronger connection between cosmological sim-
ulations and predicted direct detection event rates. We
conclude by discussing the current sources of the uncer-
tainties in the VDF, the possibilities for eliminating the
uncertainties, and suggest how to mitigate these uncer-
tainties in the experiment analysis.

The Distribution of the VDF Parameters. — We first
identify a domain of allowed parameter space from cos-
mological simulations of dark matter halos for the VDF
of Eq. (1). Paper I identifies the best-fit VDF param-
eters v

0

/v
esc

and p of individual halos from simulations,
and indicates an apparent correlation between these two
parameters for a fixed r/rs. This degeneracy between
v
0

/v
esc

and p impedes a simple description of the param-
eter domain of interest. To break this degeneracy, we
instead find it useful to parameterize the VDF of Eq. (1)
by v

rms

/v
esc

and p, where v
rms

is the root-mean-square
velocity, defined as

v
rms

⌘

4⇡

Z vesc

0

dv v4f(v)

�
1/2

. (2)

For notational simplicity, hereafter we use v
rms

and v
0

to
refer to their respective normalized values, v

rms

/v
esc

and
v
0

/v
esc

.
In Figure 1 we show the value of v

rms

as a function
of (v

0

, p). There is an one-to-one correspondence be-
tween (v

rms

, p) and (v
0

, p), so the VDF of Eq. (1) can
be completely specified by (v

rms

, p). Furthermore, lines
of constant v

rms

follow the relation between v
0

and p for
a fixed r/rs; v

rms

is largely determined by r/rs, while
the halo-to-halo scatter is primarily determined by the
parameter p. This is physically explained by noting that
v
rms

is the ratio of the average energy to the escape en-
ergy, which is directly related to the relative position in
the gravitational potential.

With this parameterization, we can now specify the
parameter domain of interest within cosmological simula-
tions. Figure 2 shows the 90% scatter on the VDF param-
eters for three di↵erent samples of simulated halos. One
sample is from the Rhapsody simulation [30], in which

FIG. 1. Contours show the value of vrms/vesc as a function of
(v0/vesc, p), from the VDF model of Eq. 1.

there are 96 halos with virial mass of ⇠ 1014.8M�h�1.
The other two samples are halos with virial mass of
⇠ 1014M�h�1 and of ⇠ 1013M�h�1 respectively, in the
the Bolshoi simulation [31]. We use samples of halos
with di↵erent masses in order to determine if there are
mass trends of the VDF parameters. As shown in Paper
I and more explicitly in Figure 2, there is no mass trend
indicated over three orders-of-magnitude in mass, imply-
ing that it is reasonable to apply the following analysis
to Milky Way mass halos.

We set the domain of interest on v
rms

based on the
current observational constraint on r/rs, which is, con-
servatively, [0.15, 1.2] [16, and references therein]. This
then sets the domain of interest on v

rms

to be [0.35, 0.52].
Since the parameter p is not a↵ected by r/rs, guided by
the 90% halo-to-halo scatter from Figure 2 we set the
domain of interest on p to be [0, 3]. We note that the
magnitude of the halo-to-halo scatter is comparable to
the directional scatter at a fixed radius within an indi-
vidual halo, so the above domain will not shrink even
if one could remove the halo-to-halo scatter completely,
given our lack of knowledge about the Earth’s angular
position. These constraints may be modified by future
observational results or a better understanding of the
dark matter distribution in simulated halos; we discuss
if there are foreseeable improvements of the constraints
on this domain of interest in the last section. For the
sole purpose of demonstrating the impact of the VDF on
the direct detection, one could take this full domain of
interest to be the allowed VDF parameter space given
modern numerical simulations.

A Demonstration with Mock Experiments. — We
demonstrate the impact of uncertainties in the VDF on
direct detection experiments by considering two mock ex-
periments, which we call Exp. X and Exp. S, and inves-
tigate how the di↵erent parameters of the VDF in Eq. 1
impact the interpretation of the results. In this demon-
stration, we assume a WIMP model which has a mass
m

dm

= 8.6 GeV and a WIMP-nucleon cross section at

• Xenon threshold at about 5.25 keV would fully test scenario
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halo, and the potential impact of baryonic physics, there
still exist significant uncertainties in the VDF, and hence
in direct detection event rates.

In this paper we explicitly identify the range of the
parameter space described by Eq. 1 that is allowed by
cosmological simulations. We further demonstrate that,
within this well-motivated parameter domain, there is
large range of predicted event rates for a WIMP model
with a fiducial mass of 8.6 GeV, and show that it is pos-
sible to simultaneously explain the CDMS-II, CoGENT,
and XENON100 results by simply by changing from the
SHM to a more cosmologically motivated VDF. This
opens up the intriguing possibility that the tension be-
tween these experiments is resolved by uncertainties in
the Milky Way halo model, and motivates the develop-
ment of a stronger connection between cosmological sim-
ulations and predicted direct detection event rates. We
conclude by discussing the current sources of the uncer-
tainties in the VDF, the possibilities for eliminating the
uncertainties, and suggest how to mitigate these uncer-
tainties in the experiment analysis.

The Distribution of the VDF Parameters. — We first
identify a domain of allowed parameter space from cos-
mological simulations of dark matter halos for the VDF
of Eq. (1). Paper I identifies the best-fit VDF param-
eters v

0

/v
esc

and p of individual halos from simulations,
and indicates an apparent correlation between these two
parameters for a fixed r/rs. This degeneracy between
v
0

/v
esc

and p impedes a simple description of the param-
eter domain of interest. To break this degeneracy, we
instead find it useful to parameterize the VDF of Eq. (1)
by v

rms

/v
esc

and p, where v
rms

is the root-mean-square
velocity, defined as

v
rms

⌘

4⇡

Z vesc

0

dv v4f(v)

�
1/2

. (2)

For notational simplicity, hereafter we use v
rms

and v
0

to
refer to their respective normalized values, v

rms

/v
esc

and
v
0

/v
esc

.
In Figure 1 we show the value of v

rms

as a function
of (v

0

, p). There is an one-to-one correspondence be-
tween (v

rms

, p) and (v
0

, p), so the VDF of Eq. (1) can
be completely specified by (v

rms

, p). Furthermore, lines
of constant v

rms

follow the relation between v
0

and p for
a fixed r/rs; v

rms

is largely determined by r/rs, while
the halo-to-halo scatter is primarily determined by the
parameter p. This is physically explained by noting that
v
rms

is the ratio of the average energy to the escape en-
ergy, which is directly related to the relative position in
the gravitational potential.

With this parameterization, we can now specify the
parameter domain of interest within cosmological simula-
tions. Figure 2 shows the 90% scatter on the VDF param-
eters for three di↵erent samples of simulated halos. One
sample is from the Rhapsody simulation [30], in which

FIG. 1. Contours show the value of vrms/vesc as a function of
(v0/vesc, p), from the VDF model of Eq. 1.

there are 96 halos with virial mass of ⇠ 1014.8M�h�1.
The other two samples are halos with virial mass of
⇠ 1014M�h�1 and of ⇠ 1013M�h�1 respectively, in the
the Bolshoi simulation [31]. We use samples of halos
with di↵erent masses in order to determine if there are
mass trends of the VDF parameters. As shown in Paper
I and more explicitly in Figure 2, there is no mass trend
indicated over three orders-of-magnitude in mass, imply-
ing that it is reasonable to apply the following analysis
to Milky Way mass halos.

We set the domain of interest on v
rms

based on the
current observational constraint on r/rs, which is, con-
servatively, [0.15, 1.2] [16, and references therein]. This
then sets the domain of interest on v

rms

to be [0.35, 0.52].
Since the parameter p is not a↵ected by r/rs, guided by
the 90% halo-to-halo scatter from Figure 2 we set the
domain of interest on p to be [0, 3]. We note that the
magnitude of the halo-to-halo scatter is comparable to
the directional scatter at a fixed radius within an indi-
vidual halo, so the above domain will not shrink even
if one could remove the halo-to-halo scatter completely,
given our lack of knowledge about the Earth’s angular
position. These constraints may be modified by future
observational results or a better understanding of the
dark matter distribution in simulated halos; we discuss
if there are foreseeable improvements of the constraints
on this domain of interest in the last section. For the
sole purpose of demonstrating the impact of the VDF on
the direct detection, one could take this full domain of
interest to be the allowed VDF parameter space given
modern numerical simulations.

A Demonstration with Mock Experiments. — We
demonstrate the impact of uncertainties in the VDF on
direct detection experiments by considering two mock ex-
periments, which we call Exp. X and Exp. S, and inves-
tigate how the di↵erent parameters of the VDF in Eq. 1
impact the interpretation of the results. In this demon-
stration, we assume a WIMP model which has a mass
m

dm

= 8.6 GeV and a WIMP-nucleon cross section at



Reconstructing WIMP properties

• For ``reasonable” halo models, bias can be made to be minimal (e.g. Pato, LS, Trotta, Bertone 2013)
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FIG. 2: Slices of the best-fit regions from the MAJORANA DEMONSTRATOR in (mX ,�n, v0) space. Light blue shows the cross section-
marginalized regions, whereas the other contours are for fixed cross section as indicated in each plot. The dashed gray curve represent
the analytic estimate, Eq. (9), which agrees well with the black contour. The input data is generated from a Maxwellian halo with with
v0 = vLSR = 230 km/s, with DM mass of 8 GeV and cross section 10�43 cm2 (left) and 7 GeV and cross section 10�42 cm2 (right).

particularly instructive. We see that in the fixed astrophysics
assumption one might expect an excellent measurement of the
mass and cross section, but the measurement deteriorates sig-
nificantly as the prior on v0 get weaker and weaker. The long-
tail extending to high masses results from the ability of high-
mass/low-velocity dispersion cases to mimic the true data rea-
sonably well. The low-mass tail, which originates from the
ability of low-mass/high-dispersion cases to match the true
data, is considerably shorter.

Going one step further, we can marginalize out the cross
section to see how well the WIMP mass, m

X

, can be deter-
mined. The results are shown in the bottom panels in Fig. 2.
We first examine the 8 GeV case. Interestingly, when the
dispersion is varied, the experimental reconstruction prefers
WIMP masses around 6 GeV. This is the result of projecting
the “sock-like” region depicted in the panel above: the “an-
kle” contains many points along the v0 direction, which when
projected onto the m

X

axis, skews the likelihood toward low
masses.

The same basic degeneracy and the concomitant skewed
likelihood functions carries over for the 7 GeV case, despite
the large increase in statistics. In the right panel of Fig. 3 we
repeat the above exercise for the example depicted in the right
panel of Fig. 2. Again, this example includes a factor ⇠7 in-
crease in signal events, which is still insufficient to completely
remove the degeneracy. In fact, the relative effect of the de-
generacy is especially significant as the 1 � region expands
from m

X

= 7+0.3
�0.2 GeV to 6.4+3.4

�0.1 GeV in going from fixed
dispersion to complete uncertainty.

In summary, by inferring the astrophysics (v0) from the
data, we suffer a significant sensitivity loss to the light WIMP

mass.

B. Via Lactea II Velocity Distributions

Do our findings depend on the particular choice of the mock
spectrum? To check this, we repeat the analysis, but instead
generate signal events from the high resolution N-body dark
matter simulations borrowed from the Via Lactea II (VL-II)
project [58]. The effect of such distributions on direct detec-
tion phenomenology has been previously studied in [59, 60]
and constraints from existing experiments derived in [37]. The
effect of tidal debris in VL-II was first observed in [49] and
subsequently applied to direct detection in [50, 61], though
here we focus on the full contents of the velocity distribution.

As we will show, the existence of the mass-dispersion
degeneracy does not depend on the input spectrum coming
from a Maxwell-Boltzmann form of the velocity distribution.
Moreover, an experimentalist is unlikely to be able to exclude
the Maxwellian hypothesis if the true halo is of a Via Lactea
form. Note that although the unscaled VL-II distribution is
not a realistic approximation of the Milky Way halo, we in-
clude it here for comparison. The scaled VL-II distribution is
scaled such that its dispersion is 220 km/s.

As can be seen in Fig. 4 for the 8 GeV case, the same qual-
itative features of mass and dispersion mis-measurement per-
sist as well, though differing somewhat in the quantitative de-
tails. There we see the small effect induced from the raw VL-
II distribution which favors low mass solutions compared to
the other two distributions. An important observation is that
the best-fit points have �

2 per degree of freedom that is very

• Low-mass dark matter constraints strongly depend on fiducial model (e.g. Shoemaker & Friedland 
2013)
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Figure 4. Reconstruction of WIMP properties when (wrongly) assuming the standard halo model
while the data are generated from the self-consistent distribution function, but additionally marginal-
izing over astrophysical uncertainties. The left frame shows the case of a xenon ton-scale instrument
for the pheno and full astrophysical setups, while the right frame corresponds to the combination of
xenon, germanium and neon data for the full astrophysical setup. Inner and outer contours corre-
spond to the joint 68% and 95% posterior probability contours, respectively. The systematic bias, as
quantified by ↵, is reduced with respect to Fig. 3, but statistical uncertainties increase.

and the scale radius rs when determining the velocity distribution through the Eddington
formula. We have chosen the outer slope and the scale radius because those are two of the
most significant parameters that impact the velocity distribution in our formalism [16, 35].
Though both halo models provide a good description to the galactic halo [16], it is clear
that they imply very di↵erent underlying values for the WIMP properties. As above, the
reconstruction is seen to be more biased in this case for lower mass WIMPs. We do find,
however, that marginalizing over the outer slope and scale radius does reduce this bias, as
shown by the upper sets of green (light) contours in Fig. 5. This simple procedure reduces
the systematic bias by up to a factor of 5, thus significantly improving the accuracy of the
reconstruction.

In the context of our isotropic velocity distribution model, it is also possible for us to ask
how well we can reconstruct the velocity distribution with an observed event rate distribution.
In Fig. 6 we show the reconstructed velocity distribution assuming a 50 GeV mass WIMP
and a ton-scale xenon detector. Overall we find that the reconstruction is unbiased at all
velocities, so it is possible to determine the velocity distribution from direct detection data
for these parameters, at least in parametric form. We also found that the marginal posterior
distribution at each velocity value is fairly close to Gaussian. Note that the measured event
rate does not directly probe the velocity distribution below the minimum velocity to scatter
at a given energy in xenon. Therefore, the parametric reconstruction presented here relies
somewhat on the specific class of models we assumed. However, it is encouraging to note
that, in this context, the reconstruction of the velocity distribution is unbiased.

6 Conclusion

In this paper we have addressed the question of the bias in the determination of the WIMP
mass and spin-independent cross-section for plausible models of the velocity distribution
function. For the two specific models that we consider, the standard Maxwell-Boltzmann

– 10 –

• More ``model independent” approaches (e.g. Peter 2011; Kavanagh & Green 2013)



Neutrinos revisited 

• For low mass WIMPs, must now start 
to account for Solar neutrinos

• In a detector, 8B Solar neutrino 
spectrum corresponds to a WIMP mass 
and cross section

• Likelihood analysis determines how to 
extract WIMP spectrum from Solar, 
Atmospheric spectrum (Strigari 2009)

Neutrino Coherent Scattering Rates at Direct Dark Matter Detectors 8

2.3. Event Rates

The differential event rate at a fixed recoil kinetic energy is

dR(T )

dT
=
∫

∞

Emin

dN

dEν

dσ(Eν , T )

dT
dEν , (3)

where dN/dEν is the neutrino flux spectrum and Emin =
√

MT/2 is the minimum

neutrino energy for a given recoil energy as dictated by the kinematics. Figure 2

shows the event rate recoil spectrum for six different nuclear targets. For all targets

the naturally-occurring abundances are assumed. For both the diffuse supernova and

atmospheric event rates, the sum of all contributing neutrino flavors are shown. In

particular for the DSNB, an 8 MeV spectrum from Figure 1 is multiplied by four to
account for the production spectrum of the four νx flavors. Due to their relatively hard

spectra, the νx flavors are seen to dominate the event rate, particular at high recoil

energies; there is only about a ∼ 10% increase by including the 3 and 5 MeV spectra

at the lowest recoil energies. Each of these curves are the true, infinite resolution

spectra, i.e. they do not account for the expected finite energy resolution of detectors.

A detailed convolution with a resolution function will depend on the nuclear target and
the particular experimental environment.

Figure 3 shows the number of events above a given recoil energy for the same six

nuclear targets. Most of the 8B events are confined to low recoil energies, for example

for the case of Xe there are a total of ∼ 103 events over all energies, but only ∼ 1

event per ton-yr above a threshold of 3 keV. Future Xe detectors are expected to have

thresholds in the area of ∼ 5 keV; as is seen dropping the threshold below this energy
will lead to a significantly increased 8B signal.

As an additional note, the analysis above just accounts for neutrino-nucleus

coherent scattering. In principle it would also be possible to detect these same fluxes

via neutrino-electron elastic scatterings [8]. For this channel the largest rate is to due

the solar pp reaction. For example, from pp scatterings on Xe a flat spectrum of electron

recoil events is expected at ∼ 0.1 events per ton-yr with energies up to ∼ 600 keV.

3. Implications for WIMP-Nucleon Cross Section Constraints

In the absence of backgrounds the expected upper limit on the WIMP-cross section

simply scales linearly with the detector. For example a ten times greater exposure

will imply a ten times stronger upper limit on the cross section. In the presence of

backgrounds, however, the projected limits on the cross section must be modified.
Dodelson [28] has provided a simple formalism for estimating the upper limit on the

WIMP-nucleon cross section, given a measured background rate and a fiducial detector

volume. In this formalism, the probability of observing a total of N events, given a

WIMP-nucleon cross section, σ, is

L(N |σ) ∝
∫

∞

0
dNb exp

[

−(Nb − N̄b)2

2σ2
b

]

e−µµN

N !
. (4)
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Concluding remarks

• CDM has been challenged many times since it has been developed

• No clear evidence that it needs to be discarded (or totally believed 
in its current form)

• Picture should continue to clarify in the next few years...

Do we need alternatives to Cold Dark Matter? 

Halo models & Direct Detection

• (Carefully) interpret results in the context of non-standard velocity dark 
matter distributions 

• We need a new CDM inspired standard (non-standard) halo model


