The Search for Dark Matter Debris

Exploring New Possibilities for Substructure

Mariangela Lisanti

Princeton Center for Theoretical Science

with M. Kuhlen and D. Spergel [1105.4166, 1202.0007, In Progress]

Dark Matter Searches

Experimental signatures depend on local phase space

Direct Detection

Dark matter scatters off nuclei

Measure recoil energy of nuclei

Rate
$$\propto \int v f(v) dv$$

Astrophysical Detection

Dark matter annihilation

Detect annihilation products

Flux
$$\propto \int_{\mathbb{R}^2} \rho^2(r) ds$$

Halo Formation

Milky Way DM halo forms as subhalos merge to form a more massive system

Incomplete merging of subhalos leaves structure in DM phase space

Phase Space Density

A Spectrum of Possibilities

Smooth Halo

Fully Virialized

Maxwell-Boltzmann

PHYSICAL REVIEW D VOLUME 33, NUMBER 12 15 JUNE 1986

Detecting cold dark-matter candidates

Andrzej K. Drukier

Max-Planck-Institut für Physik und Astrophysik, 8046 Garching, West Germany and Department of Astronomy, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138

Katherine Freese and David N. Spergel

Department of Astronomy, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,

Cambridge, Massachusetts 02138

(Received 2 August 1985)

Proposed a model for the velocity distribution of dark matter

Flat rotation curves imply that density falls off as $1/r^2$

Isotropy + Equilibrium + $\rho \sim r^{-2}$ = Maxwell-Boltzmann

A Spectrum of Possibilities

Streams

Streams in Simulations

Spatially-localized structures with coherent velocities

Field of Streams

Abundance of substructure observed in star surveys

Spatial overdensities indicate presence of stellar streams

A Spectrum of Possibilities

Locating the Debris

Searched for distinctive features in Via Lactea-II, with a focus on tidal debris

A particle is labeled as "debris" if it was bound at some z > 0, but is no longer bound to a subhalo today

Via Lactea-II

High-resolution N-body simulation of the Milky Way

Only dark matter; no baryons

20047 subhalos identified today and evolutionary tracks available

Locating the Debris

de·bris particles that were bound at some z > 0 and that are no longer bound to subhalos today

General Procedure

- 1. Locate subhalo (at z_{past}
- 2. Identify particles bound to subhalo at z_{past}
- 3. Find those particles today

Spatially-homogenous in the inner halo

[movie here]

Comprises majority of high-velocity particles in the Milky Way

Arises from the most massive subhalos falling into MW that make numerous pericenter passages

Debris speeds peaked at ~340 km/s in Galactic frame

Speeds

Characteristic speed of debris flow is a consequence of energy conservation

$$v^{2}(8.5 \text{ kpc}) - v^{2}(D_{\text{apo}}^{f}) = 2\left[\Phi(8.5 \text{ kpc}) - \Phi(D_{\text{apo}}^{f})\right]$$

 $v(8.5 \text{ kpc}) \simeq 370 \text{ km/s}$

Tangential Velocities

Velocities become more tangential closer to the Galactic center

Results from tidal stripping near pericentric passage of subhalo orbit

(Subset of debris bound at z=9, more complete analysis is work in progress)

Direct Detection

Local velocity distribution of dark matter affects scattering rate

$$\frac{dR}{dE_R} = n_{\rm dm} \left\langle v \frac{d\sigma}{dE_R} \right\rangle \propto \int_{v_{\rm min}}^{v_{\rm esc}} d^3 v \, \frac{d\sigma}{dE_R} \, v (f(v))$$

Typical assumption is that f(v) is Maxwell-Boltzmann \Rightarrow leads to exponentially-falling scattering rate

How does this change for debris flows?

A Spectrum of Possibilities

Direct Detection

--- 340 km/s Debris Flow

Maxwell-Boltzmann (MB)

Direct Detection

Debris flow increases scattering rate and modulated amplitude at large recoil energies

---- 340 km/s Debris Flow

MB + Debris Flow

Maxwell-Boltzmann (MB)

Stars as Tracers

The dense cores of subhalos were the site of star formation billions of years ago

These stars are tidally-stripped from subhalos as they orbit the Milky Way

Johnston et al. [0807.3911]

Time required for stars to exchange energy and momenta is long compared to age of the Galaxy

Therefore, kinematics of stars encode information about their origin

Conclusions

Wealth of dark matter structure in the solar neighborhood

Majority of high-velocity particles are in debris flows

Debris flows can affect modulation in direct detection searches

Evidence for stellar flows may provide additional input for interpreting a potential dark matter signal