Extremely Metal-Poor Stars in the Least Evolved Galaxies

Josh Simon Carnegie Observatories

Collaborators:

Anna Frebel (MIT)
Josh Adams (Carnegie)
Marla Geha (Yale)
Evan Kirby (Caltech)
Steve Shectman (Carnegie)
Ian Thompson (Carnegie)

Metal-Poor Stars in Dwarfs

- Unraveling the formation of the Milky Way halo
 - Are present-day dwarfs similar to the building blocks of the halo? (Robertson et al. 2005; Frebel, Kirby, & Simon 2010)
- The first stars
 - Dwarf galaxies may be the best places to look for the most metal-poor stars (Kirby et al. 2008; Frebel et al. 2010; Simon et al. 2011)
- Nucleosynthesis and chemical evolution in the early universe (Koch et al. 2008; Simon et al. 2010)

Why Nearby Dwarfs?

z=7

Oesch et al. (2010)

z=0

Belokurov et al. (2006b)

Why Nearby Dwarfs?

z=7

Oesch et al. (2010)

z=0

Belokurov et al. (2006b)

 $1/r^2$ at z=7: 2×10^{-59}

 $1/r^2$ at 100_{47} kpc: 1×10^{-1}

Where Do [Fe/H] < -3 Stars Live?

Milky Way bulge: ?? (Tumlinson 2010)

A Hint

Metallicity-luminosity relationship

- Faint dwarfs ≠ tidally-stripped bright dwarfs
- Stars know what luminosity system they live in

Where Do [Fe/H] < -3 Stars Live?

- Milky Way halo: <1% (Schörck et al. 2009)
- M_V < -8 dwarfs: 1-5% (Starkenburg et al. 2010)
- M_V > -8 ultra-faint dwarfs: >10% (Simon et al. 2010)
- Segue 1 ($M_V = -1.5$): 42% (Frebel et al., in prep.)

Measuring Abundances in Dwarfs

High-resolution spectroscopy

- Accurate abundances for many elements
- Requires bright targets + long integrations

Measuring Abundances in Dwarfs

Ca triplet

- Requires only low/medium resolution spectroscopy
- Can be used for much fainter stars!

e.g., Rutledge et al. (1997)

Measuring Abundances in Dwarfs

- Spectral synthesis with medium resolution spectroscopy
 - Lots of lines other than the CaT in R=6000 spectra

Finding the Most Metal-Poor Stars

- Spectral synthesis requires large λ range
- Ca triplet less sensitive at low metallicity
- Ca K just right

Beers, Preston, & Shectman (1985)

Ca K Survey

- Complete, magnitude limited survey (to V~20) of southern dSphs
- Uses IMACS spectrograph at Magellan

No More Acronyms!

SHARP

CCKSUMOMPSDG

(Complete Ca K SUrvey for the MOst Metal-Poor Stars in Dwarf Galaxies)

IMACS Survey Data

[Fe/H] = -1.5

[Fe/H] = -2.5

[Fe/H] = -3.8

Initial Results

Sculptor Carina Sextans

Initial Results

Sculptor
Carina
Sextans
Fornax

Medium and high resolution followup:

 $-3.1 \le [Fe/H] \le -4.0$

Survey Status

- >1850 stars in Sculptor (513 in Helmi et al. 2006)
- 2912 stars in Fornax (933 in Helmi et al. 2006)
- 1294 stars in Carina (437 in Koch et al. 2006)
- 794 stars in Sextans (202 in Helmi et al. 2006)

It's Full of (EMP) Stars!

- 8% of stars in Sculptor have [Fe/H] < -3
- 6% in Carina
- 17% in Sextans

Carbon

• CN bandhead at 3883 A

Carbon

• 20% of metal-poor halo stars are carbon-enhanced (Cohen et al. 2005; Frebel et al. 2006)

Universal Early Chemical Evolution?

$$M_V = -20.5$$
 $M_V = -5.7$ $-8 < M_V < -14$ $M_V = -3.9$ $M_V = -6.6$ $M_V = -3.8$ $M_V = -6.3$

Data from Cayrel, Frebel, Norris, Shetrone, Simon, etc.

The Heaviest Elements


```
M_V = -20.5 (Francois07, Cohen04, Aoki05, Lai08) -8 < M_V < -14 (Shetrone/Frebel10b/Tafelmeyer10) M_V = -6.6 (Koch08) M_V = -6.3 (Norris10) M_V = -5.7 (Simon10) M_V = -3.9 (Frebel10a) M_V = -3.8 (Frebel10a)
```

Mass Dependent SN Yields?

Mass Dependent SN Yields?

Strongly mass dependent yield

Lee et al., in prep.

The First Supernova in Leo IV

- Leo IV has a luminosity of 14000 L_o (Sand et al. 2009)
- Total iron content of the galaxy is
 0.04 M_☉
- A single Pop III supernova produces >0.03 M_© of Fe (Heger & Woosley 2008)
- Were all of the metals in Leo IV synthesized by a single star??

The First Supernova in Leo IV

 Leo IV abundance pattern compared to Pop III supernova models

Summary

- Dwarf galaxies are home to large populations of extremely metal-poor stars
 - CCKSUMOMPSDG will find them

- Abundance patterns of these stars show:
 - Present-day dwarfs may be similar to halo building blocks
 - Early chemical evolution of galaxies appears nearly universal
 - Hints of the first supernova explosions?