# Substructure in lens galaxies: first constraints on the mass function

Simona Vegetti (MIT)

In collaboration with:

Dave Lagattuta (CAS), John McKean (ASTRON), Matt Auger (IoA), Chris Fassnacht (UCD), Leon Koopmans (Kapteyn Institute) & Tommaso Treu (UCSB) How do we probe the small scales beyond the Local Universe and independently from baryons?



### Using strong gravitational lensing!



α

Independent of the baryonic content Independent of the dynamical state of the system Only way to probe small satellites at high redshift



### How do we recognise the effect of substructure?



Bayesian grid-based gravitational imaging

Potential corrections

Potential model

$$\psi(x,\eta) = \psi_s(x,\eta) + \delta\psi(x)$$

 $\psi_s(x,\eta)$  Families of (elliptical) parametric models

 $\delta\psi(x)$  Potential corrections, pixelized on a Cartesian grid. Signature for substructure or general features that are not part of the parametric model.

Conservation of surface brightness allows us to express the lens mapping as a set of linear equations:

Vegetti S., Koopmans L. V. E., 2009a



A Simulated Example

#### Koopmans L.V.E., 2005, MNRAS, 363,1136



Substructure density profile as truncated isothermal

$$\rho_{sub} \propto r^{-2} \left( r^2 + a^2 \right)^{-1}$$

 $M_{sub} = 3.0 \times 10^9 M_{\odot}$ 

Multiple Substructures

Blind test with simulated lens systems containing multiple massive substructures



### Substructure are draw randomly from a mass function



Substructure Statistics

Statistics of Detection

#### Constraining the substructure mass fraction and mass function



 $dN/dm \propto m^{-\alpha}$ 

$$\mathcal{L}(n_s, \mathbf{m} \mid \alpha, f, \mathbf{p}) = \frac{e^{-\mu(\alpha, f, < R)} \ \mu(\alpha, f, < R)^{n_s}}{n_s!} \prod_{i=1}^{n_s} P(m_i, R \mid \mathbf{p}, \alpha)$$
$$(\alpha, f \mid \{n_s, \mathbf{m}\}, \mathbf{p}) = \frac{\mathcal{L}(\{n_s, \mathbf{m}\} \mid \alpha, f, \mathbf{p}) P(\alpha, f \mid \mathbf{p})}{P(\{n_s, \mathbf{m}\} \mid \mathbf{p})}$$

Statistics of Detection

Constraining the substructure mass fraction and mass function

$$P(\alpha, f \mid \{n_s, \mathbf{m}\}, \mathbf{p}) = \frac{\mathcal{L}(\{n_s, \mathbf{m}\} \mid \alpha, f, \mathbf{p}) P(\alpha, f \mid \mathbf{p})}{P(\{n_s, \mathbf{m}\} \mid \mathbf{p})}$$

#### **Results depend on:**

- O The mass function slope
- O The mass fraction of substructure
- O Number of galaxies in the survey
- O Mass-detection threshold, i.e smallest mass you can detect
- O Error on the substructure mass measurement/Prior on mass slope

Statistics of Detections: Changing the Mass Fraction

Vegetti S., Koopmans L. V. E. 20096

Constraining the substructure mass fraction and mass function



Systems with 10 lenses

Statistics of Detections: Changing the Detection Limit



Systems with 10 lenses

Statistics of Detections: Changing Survey Parameters

 $M_{
m low}$ 

 $\times 10^{8}$ 



Statistics of Detection

#### Summary:

O Substructure detection threshold  $3 \times 10^8 M_{\odot}$ , 30 lenses and true darkmatter mass fraction is 1.0%:

f <1.0% (95% CL)

O Substructure detection threshold  $3 \times 10^8 M_{\odot}$ , 200 lenses and true darkmatter mass fraction is 0.5%:

 $f = 0.5 \pm 0.1\%$  (68% CL)  $\alpha = 1.90 \pm 0.2$  (68% CL).

 Constraining the mass function slope requires a high number of detected substructures ~ 10

J12602+514229



Image Residual

Source





J12602+514229

#### Power Law + density corrections



Convergence



The SLACS Survey

The SLACS Survey



SLACS: The Sloan Lens ACS Survey www.SLACS.org A. Bolton (U. Hawai'i IfA), L. Koopmans (Kapteyn), T. Treu (UCSB), R. Gavazzi (IAP Paris), L. Moustakas (JPL/Caltech), S. Burles (MIT)

#### **SLACS:**

O Lens selected

O Spectroscopy-selected

O Uniform lens-galaxy criteria: E/S0

O Emission-line selection

O Blue star-forming source provides good lens/source contrast

• State of the art: few x 10<sup>5</sup> targets

O Lensing rate: ~1/2000

O Results: ~100 confirmed lenses

Bolton A. S. et al. 2006

# J0946+1066 - Double Ring

High Signal-to-Noise Data & Large DM Fraction



• Two concentric ring-like structures

• Dark-matter fraction:  $f(\langle R_{eff}) = 73\% \pm 9\%$ 

• Expected number of mass substructure from CDM paradigm within  $\Delta R = R_{ein} \pm 0.3$ 

 $\mu(\alpha = 1.90, f = 0.3\%, R \in \Delta R) = 6.46 \pm 0.95$ 

 If f~5% (Dalal & Kochanek 2002), the expectation values for mass substructure is ~50 substructures

Gavazzi et al. 2008

Vegetti S., Koopmans L. V. E. 2010

J0946+1066 - Double ring



Results are stable against changes in the PSF, lens galaxy subtraction, number of pixels, pixel scale and rotations

k(r)dr = 0

J0946+1066 - Double ring

#### Power-Law smooth model + Power-Law substructure



 $M_{\rm sub} = (3.51 \pm 0.15) \times 10^9 M_{\odot}$ 

$$r_t = 1.1 \ kpc$$

$$\Delta \log \mathcal{E} = -128.0$$

equivalent to a  $\sim 16\sigma$  detection

 $M_{3D}(<0.3) = 5.83 \times 10^8 M_{\odot}$ 

Work in Progress





















The SHARP survey

SHARP

The Goals:

O search for evidence of mass substructure in cosmologically distant galaxies

O built up information on the substructure mass function and the dark matter mass fraction in substructure

O compare with prediction from simulations

The Tools:

O gravitational lensing imaging technique

O high angular resolution imaging



First Applications to SHARP

## B1938+6666

# Radio Source at $z_s = 2.059$ with a Infrared Einstein ring lensed by an early-type galaxy at $z_l = 0.881$

AO







Lagattuta et al. 2012 Vegetti et al. 2012

King et al. 1998

## B1938+6666

### Keck K-band

### $M \approx 1.7 \times 10^8 M_{\odot}$



Source



Convergence





Arcsec

0.1 Arcsec 0 -0.1

Arcsec





0.8

0.6

**4**.0

0.2

ο

0.5

Arcsec 0

-0.5

B1938+6666



Arcsec

Arcsec

Arcsec







2×10<sup>-3</sup>

o

-2×10



Source



Convergence



0.08 0.06 0.04 0.02 o -0.5 0.5 0

Arcsec

B1938+6666



Substructure as a truncated pseudo Jaffe $M_{sub} = (1.9 \pm 0.1) \times 10^8 M_{\odot}$  $M(<0.6) = (1.15 \pm 0.06) \times 10^8 M_{\odot}$  $M(<0.3) = (7.24 \pm 0.6) \times 10^7 M_{\odot}$ 

Substructure as SIS  $M(<0.3) = 3.4 \times 10^7 M_{\odot}$   $\sigma_v \approx 16 \ km \ s^{-1}$ ion  $V_{max} \approx 27 \ km \ s^{-1}$ 

 $\Delta \log E = 65.0$  12  $\sigma$  detection



Substructure mass function



 $f_{CDM} \approx 0.1\% \qquad \alpha_{CDM} = 1.9$ 

LOS contamination

The major source of systematic error is de-projection of the substructure position within the host galaxy



Probability of M under the assumption that the satellites follow the host galaxy mass distribution

Contamination from LOS interlopers is also possible:

Chen et al. 2009: 1-10 %

De-projection yields a systematic uncertainty on the total mass of 0.3 dex at the 68 per cent confidence level.

Conclusions

- Surface brightness anomalies can be used to find low mass galaxies at high z
- Simulations show that with HST quality data, 10 systems are sufficient to constrain the mass function
- Using high resolution adaptive optics data and the gravitational imaging technique we discovered an analogue of the Fornax satellite at redshift about 1
- The first constraints on the mass function are consistent with prediction from CDM (large errors ....)

O LOS contamination is not necessarily bad