First Light and Faintest Dwarfs, KITP, UCSB, 2012

Primordial Star

Formation

Physics, simulations, and

the prospects for observation Naoki Yoshida

> K A V L I

INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Contents

+ Physics of primordial star formation + The primordial IMF: 43 solar-masses + A forbidden star : PopIII/II * Hunting for the first supernovae: TypeII!

References:
NY, Omukai, Hernquist, 2008, Science
Bromm, NY, McKee, Hernquist, 2009, Nature
Ohkubo, Umeda, Nomoto, NY, Tsuruta, 2009, ApJ
Bromm \& NY, 2011 , Annual Reviews A\&A, 49
Hosokawa, Omukai, NY, Yorke, 201 1, Science
De Souza, NY, Ioka, 2011 , A\&A
Tanaka, Moriya, NY, Nomoto, 2012, MN submitted

My playground

Year
Updated by M. Tanaka

Most distant galaxies

Hubble Ultra Deep Field • Infrared
Hubble Space Telescope • WFC3/IR

z=7 quasar

2 billion solarmasses at t~700 million years

Stellar relics in the MW

Low-mass (<1 Msun),
extremely metal-poor (not only iron poor)
$Z<4.5 \times 10^{-5} Z_{\text {sun }}$
Caffau et al. 2012

Theory

The Standard Cosmology

An ab initio approach is possible

CMB + LSS + SNe tell us about the initial state of the universe, its expansion history, and the energy content now and then precisely.

In the beginning,
there was a sea of light elements
and dark matter...

NY+ 2003; Bromm, NY, McKee, Hernquist, 2009; Kamada+, in prep.
\wedge CDM model

From a minihalo to a protostar

Resolving planetary scale structures in a cosmological volume!

A complete picture of how a protostar is formed from tiny density fluctuations. 5pc

25 solar-radii
NY, Omukai, Hernquist 2008

Physics at a glance

From a protostar

 to main-sequencegas accretion

Massive

P•『ПП

Stares

Observations tell...

No evidence for PISN contribution in the early
Galactic chemical evolution. PISN $\sim 200 M_{\text {sun }}$ progenitor

Theorists said...

Long time ago Massive (no Poplll in MW) Small (Silk)
~2000 Very massive (>100Msun) (Abel, Bromm) Jeans mass, accretion time
2003-2006 Very very massive (~100-600) (Omukai) Proto-stellar calculation, 1D
2006-2007 Poplll.2: ordinary massive (40 Msun)
HD cooling (Yoshida, Johnson)
2008 Very massive, ~140 Msun (McKee-Tan)
Disk evaporation
2009 Very very very massive (onkubo), Binary (Turk) Core evolution with accretion, BH formation Rotation?
2011 Ordinary massive (Hosokawa), Low-mass (Clark) "Cosmo" IC + disk evaporation Accretion disk fragmentation Sink particles

Post-collapse simulations

Disk evolution using sink particles Follows only 100-1000 years
~ 1% of the entire evolution.

The key question

 How and when does a primordial star stop growing?
Protostellar evolution to main-sequence

Hil region break-out

Radiation-hydro. calculation by T. Hosokawa (JPL).
lonizing photon transfer by ray-tracing, continuum (H^{-})
by Flux Limited Diffusion.
H. Yorke's code

+ non-eq. chemistry.
Initial condition taken from our cosmological run.

Accretion vs photo-evaporation

Hosokawa, Omukai, NY, Yorke 2011, Science

Long standing puzzle resolved

Observed elemental abundances

Poplll to Popll

Is there a "critical metallicity" for cloud fragmentation ?

If so, what's the physics behind it?

Bromm et al. atomic cooling

$$
\begin{aligned}
& \text { by C, O } \\
& \text { @low-density }
\end{aligned}
$$

Omukai, Schneider
VS. cooling by dust @high density

Recall talks by M.Trenti, O. Gnedin, J. Wise

"Dusticity" $10^{-6}-1 Z_{\text {sun }}$

Chemo-hydro. calcuation

Omukai+2005; Omukai, Hosokawa, NY, 2010

Formation of Caffau's star Triggered star-formation by the first supernova

Chiaki, NY, Kitayama, 2012; see also Dopke et al. 201 1, Klessen et al. 2012

$$
\begin{gathered}
\text { Hunting for } \\
\text { high-z } \\
\text { supernovae }
\end{gathered}
$$

The future

TMT
The Webb

Individual star...impossible!

Hope for SKA

Core-collapse

supernovae

at very high-z

Highest-z supernova

Type lln at z=2.4

Super-luminous SN

They are visible even at very high-z.

2008es: Bright in UV

Miller et al. 2009

SN 2006gy

Lightcurve sim. by STELLA
Moriya, Blinnikov, et al., in prep.

Best model:
 $\mathrm{E}=10^{52} \mathrm{erg}$, ejecta mass $=20 \mathrm{Msun}$

Model SED and LC

IMF by NIR survey

Summary

- Primordial stars are massive, but mostly not extremely massive
- First supernova as a plausible mechanism for low-mass, low-metallicity star formation.
- Population III Gamma-ray bursts at z~10 detectable by future X-ray missions
- Early Typelln detectable to z~10

