

A guide for the perplexed: Systems biology, transcriptional modeling, and the Drosophila embryo

David Arnosti

Department of Biochemistry and Molecular Biology Michigan State University

• Biological theory of everything

- Biological theory of everything
- Excuse not to think before doing experiments

- Biological theory of everything
- Excuse not to think before doing experiments
- Way to glean good insights from bad data

- Biological theory of everything
- Excuse not to think before doing experiments
- Way to glean good insights from bad data
- Integration of quantitative tools and largescale datasets to bring us to the next level of understanding of systems

stage 2 Nuclear division Number: 5

I wonder how that works...

Development starts with a few ordered manifoldnesses; but the manifoldnesses create, by interactions, new manifoldnesses, and these are able, by acting back on the original ones, to provoke new differences, and so on. With each new response, a new cause is immediately provided, and a new specific reactivity for further specific responses.

Hans Driesch (1894) Analytische Theorie der organischen Entwicklung (http://7e.devbio.com/article.php?ch=10&id=110)

Wieschaus & Nusslein-Volhard, Levine and others: We need to know something about transcription

Fujioka et al. (1999) Development 12:2527 and Sackerson et al. (1999) Dev. Biol.211: 39.

Sepsid *even-skipped* Enhancers Are Functionally Conserved in *Drosophila* Despite Lack of Sequence Conservation

Emily E. Hare^{1®}, Brant K. Peterson^{1,2®}, Venky N. Iyer¹, Rudolf Meier³, Michael B. Eisen^{1,2,4,5}*

Kreitman, Eisen, and others - we need to know something about evolution

Functional Output Fitness Landscape

"Billboard" Enhancer Model

Arnosti and Kulkarni, 2005

Empirical identification of a cis regulatory element "grammar" – what matters for enhancer output?

- Spacing (cooperativity, quenching)
- Activator/repressor stoichiometry
- Site arrangement
- Binding site affinity
- Abundance of factors

Application of a Predictive Model

Critical Reviews in Biochemistry and Molecular Biology, 2011; 00(00): 000–000 Copyright © 2011 Informa Healthcare USA, Inc. ISSN 1040-9238 print/ISSN 1549-7798 online DOI: 10.3109/10409238.2011.556597

REVIEW ARTICLE

Mathematical modeling of gene expression: a guide for the perplexed biologist

Ahmet Ay^{1,2} and David N. Arnosti³

¹Department of Biology, Colgate University, Hamilton, NY, USA, ²Department of Mathematics, Colgate University, Hamilton, NY, USA, and ³Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA

Some approaches involving modeling...

"Thermodynamic" model

- Uses DNA sequence information
- Subtle modifications spacing, affinity, overlaps
- Snapshot equilibrium situation

Differential Equation model

- Promoter treated as black box
- Incorporates post-transcriptional processes
- Movie provides dynamic pictures

Boolean model

- Promoter black box
- Post-transcriptional processes
- Movie
- Interactions simplified to +/-
- Computations simpler, output coarser

1. For DNA-level modeling, thermodynamic approaches are especially apt

2. If you are fastidious, you must collect your own data

Quantitative and predictive model of transcriptional control of the *Drosophila melanogaster even skipped* gene

Hilde Janssens¹, Shuling Hou², Johannes Jaeger¹, Ah-Ram Kim¹, Ekaterina Myasnikova³, David Sharp⁴ & John Reinitz¹ Nature Genetics 38: 1159 (2006)

Focusing specifically on properties of short-range transcriptional repressors:

Walid Fakhouri

Empirical Testing of Transcriptional Grammar

Spacing Arrangement and Promoter Proximity

3. Gt₂.35.Tw₂.Dl₂

2. Gt₂.25.Tw₂.Dl₂

1. Gt₂.Tw₂.Dl₂

4. Gt₂.50.Tw₂.Dl₂

5. Gt₂.60.Tw₂.Dl₂

6. Gt₂.75.Tw₂.Dl₂

7. Gt₂.100.Tw₂.Dl₂

8. Gt₂.125.Tw₂.Dl₂

9. $\text{Gt}_1.\text{Tw}_2.\text{Dl}_2$

10. Gt₁.25.Tw₂.Dl₂

11. Gt₃.Tw₂.Dl₂

12. Gt₃.50.Tw₂.Dl₂

13. Gt₃.75.Tw₂.Dl₂

Stoichiometry and Spacing

Walid Fakhouri and Rupinder Sayal

Example of modeling for one construct

C: Cooperativity, R: Repressor Scaling Factor, q: Quenching Efficiency

Scaling Factors Dorsal : 1.2 ± 0.13 Twist : 75 ± 18 Snail : 54 ± 6.5

Ip, Gray and Levine

Cooperativity Dorsal2-Twist1 : 7 ± 1.3 Dorsal3-Twist2 : 74 ± 16 Twist1-Twist2 : 69 ± 22 Snail2-Snail3 : 65 ± 20

Rupinder Sayal

Enhancer robustness

bHLH duo

Probing the limits to enhancer robustness

DI1, DI3

Dl2, Twi1

DI1, bHLH Duo

Test specific hypotheses about protein interactions on the enhancer

Two-layer model to incorporate *cis*regulatory and temporal information

How does variation in *cis*-regulatory information affect development?

Jacqueline Dresch

Perry et al, Current Biology 2010

Comprehensively incorporate *cis*-regulatory information

Bieler et al, Biophysical Journal 2011

Comprehensively incorporate *cis*-regulatory information

Incorporate GRNs and protein interactions

Markstein et al, PNAS 2002

Comprehensively incorporate *cis*-regulatory information Incorporate GRNs and protein interactions **Predict changes through time**

http://insects.eugenes.org/DroSpeGe/

Comprehensively incorporate *cis*-regulatory information Incorporate GRNs and protein interactions Predict changes through time **Understand the impact of evolution on gene expression**

Perkins et al, PLoS Comp Bio 2006

Simple Gene Network:

Dorsal, twist, snail, and rhomboid

+ + - (target)

Dorsal levels relatively invariant during modeled interval

Feedback loop

Coherent and incoherent feed-forward loops

Predicted binding sites on each enhancer

twi

sna

rho

Expression Profiles

Nuclei (Ventral-Dorsal)

Two-Layer Model...

Thermodynamic synthesis term (similar to those of Fakhouri & Ay 2010 and Janssens 2006)

 $S^{a}(p_{i}) = \frac{K_{T}[T] + K_{D}[D] + CK_{T}K_{D}[T][D] + Q_{T}K_{T}K_{S}[T][S] + Q_{D}K_{D}K_{S}[D][S] + CQ_{D}K_{T}K_{D}K_{S}[T][D][S]}{1 + K_{T}[T] + K_{D}[D] + K_{S}[S] + CK_{T}K_{D}[T][D] + K_{T}K_{S}[T][S] + K_{D}K_{S}[D][S] + K_{T}K_{D}K_{S}[T][D][S]}$

Preliminary Results

Sensitivity analysis of biological models:

(How much model output changes as particular parameters are tweaked)

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Universally Sloppy Parameter Sensitivities in Systems Biology Models

Ryan N. Gutenkunst^{1*}, Joshua J. Waterfall², Fergal P. Casey³, Kevin S. Brown⁴, Christopher R. Myers⁵, James P. Sethna¹

Thermodynamic transcription models have not been similarly analyzed...

Jackie Dresch, Xiaozhou Liu, Ahmet Ay

Dresch et al. BMC Systems Biology 2010, 4:142 http://www.biomedcentral.com/1752-0509/4/142

RESEARCH ARTICLE

Open Access

Thermodynamic modeling of transcription: sensitivity analysis differentiates biological mechanism from mathematical model-induced effects

Jacqueline M Dresch¹, Xiaozhou Liu², David N Arnosti^{2*}, Ahmet Ay^{3,4*}

Computational Models for Neurogenic Gene Expression in the *Drosophila* Embryo

Robert P. Zinzen,¹ Kate Senger,¹ Mike Levine,^{1,*} and Dmitri Papatsenko¹ ¹Center for Integrative Genomics Department of Molecular and Cell Biology University of California, Berkeley Berkeley, California 94720-3204

r

Retinoblastoma (RB) corepressors

RB regulation by phosphorylation

Developmental- and tissue-specific expression of Rbf1

Keller et al. (2004)

Rbf1 binds close to transcriptional start sites

Insulin Pathway

Increased Rbf repression

Shingleton et al. (2009) Proc Biol Sci 276:2625.

Hippo Pathway Ds Fj Ft Crb Dco lft App -> Dachs Lgl Kibra Ex Mer aPKC Tao-1 Нро Sav dRASSF **d**STRIPAK dJub Wts Mats PP2A Wbp2 Yki Sd

JAK / STAT Pathway

Arnosti lab and friend

Bill Henry Nitin Raj Satyake Sengupta

Kevin White Nicolas Negre

MSU iCER: John Johnston

Funding from NIH, MSU Foundation