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Accretion

The process of accretion is required to explain 

• The formation of compact objects: planets, stars,  supermassive
black holes

• The release of gravitational energy: Cataclysmic Binaries, Radio
Galaxies, Active Galactic Nuclei 

300 Kp
HH 30 (Hubble ST) Sagittarius A*  (ESO)
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Angular Momentum Transport 

Circular Keplerian rotation                     
with angular momentum
increasing outward is (linearly) stable (for 

axisymmetric disturbances) due to Rayleigh 
criterion

2/3−∝Ω r

⇒ Magneto-Rotational Instability (Balbus & 

Hawley 1991; Velikov 1959, Chandrasekhar 

1960) for hydro-magnetic flows with 

angular velocity increasing inward
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• Saturation of MRI?

∝Ω r



KITP 2008

Cylinders

• Some basic features of the MRI can be studied by laboratory experiments 
using liquid metals (Na, Ga) confined between coaxial rotating cylinders

Princeton MRI liquid gallium experiment: H. Ji & J. Goodman  (see also Schartman 2008)
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velocity increasing inward and angular momentum outward  (Keplerian-
like profile).  Ideally,

• Cylinders rotate so that basic state has circular streamlines and angular 
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Top and Bottom Boundaries 
• Periodic in the vertical: circular Couette (Keplerian-like) flow 

• Experiments need vertical boundaries: lead to some form of Ekman flow

lids rings
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Azimuthal vorticity (Re=6200)
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⇒ Less distortion of Couette profile 
in case w/ rings due to the 
disruption of Ekman flow
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Ekman flow disruption

• Inward/outward Ekman
flows are due to near-wall 
rotation momentum 
deficit/excess over 
centripetal pressure 
gradient (Obabko, 
Cattaneo & Fischer 2008)
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⇒ Disruption of Ekman circulation 
in the case of rings and therefore, 
decrease of associated angular 
momentum due to smaller ur uθ
correlation

Vagn Walfrid Ekman
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Experiments and simulations

Experiments:
• Can reach high Reynolds number   (Re = O(106 - 107) )
• Are stuck at low magnetic Reynolds number  (Rm = O(10 - 102) )
• Vertical boundaries confuse the issue
• Difficult to take measurements with high spatial resolution
• Can be run for a long time

Simulations:
• “Scenarios” (Leo Kadanoff) require validation
• Stuck at moderate Reynolds numbers (both kinetic and magnetic)
• ‘No problem’ with vertical boundary conditions
• Can measure anything (but getting harder with bigger supercomputers)
• Almost impossible to run for very long

⇒ FFT in time works better for experiments and FFT in space – for simulations

⇒ In particular to MRI, it is extremely hard to conduct high Rm MRI experiment
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Problem Formulation
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• Incompressible viscous resistive MHD equations in cylindrical geometry of 
Princeton MRI liquid gallium experiment

• Boundary conditions:
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• Solved numerically by MHD version of spectral element code Nek5000 
optimized for highly parallel machines 
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Axisymmetric vs 3D (z-periodic, Bz0=0.05)

⇒ Axisymmetric solution is strongly unstable to 3D perturbations ( Pm = O(1) )

Re=60,000   Rm=30,000  ϒSquare current: Re=6,000   Rm=3,000  *  §

*  Acknowledge the use of resources of NERSC at Lawrence Berkeley National Laboratory (as INCITE 2005)
§ Acknowledge the help of NERSC Visualization Group, LBNL
ϒ Run time on 32,768 processors of Blue Gene Watson (BGW) was provided courtesy of the IBM Corporation 

& acknowledgement of the use of resources of Argonne Leadership Computing Facility operated by ANL          

⇒ Saturation both through dissipation and modification of background velocity for 
axisym / 3D toward constant azimuthal / constant angular velocity  (cf. Julien & 
Knobloch 2005)

Azimuthal Velocity
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from MRI to MRI-driven turbulence
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Axisymmetric

magnetic field

Look at strongly supercritical cases (Re = 60,000 - periodic conditions)
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⇒ Qualitatively looks similar to (penetrative) convection

• Fluctuations of azimuthal quantities:

⇒ Torque increase: 5 (axisym) and 20 (3D)
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MRI-Driven Turbulence:    θu′

⇒ Streaks of high and low speed / 
angular momentum
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Reynolds

Maxwell

Total

Viscous

radius

Reynolds

Maxwell

Total

Viscous

Angular momentum fluxes ( x r)

Angular Momentum Transport

ruur θ
′

rBBr θ−Re=6,000   Rm=3,000

Re=60,000   Rm=30,000

Reynolds and Maxwell stress fluxes of AM

⇒ Reynolds stress flux confinements to 
cylinder “boundary layers”

⇒Maxwell stress flux domination
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radius

Reynolds

Maxwell

Total

Viscous

rBBr θ

Angular Momentum Transport

−ruur θ
′

θB
θu′

θB
θu′

• Maxwell stress flux domination

⇒due to the correlation of Br
and Bθ correlation (Br * Bθ <0 )
for AM transport outward

ru rB
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Br and Bθ Correlation (Br * Bθ <0 ) 

• Angular momentum is carried outwards (inwards) by magnetic 
fluctuations that correspond to winding (unwinding) spirals -i.e. 
getting longer (shorter)

• In a random circular sheared motion there are more winding than 
unwinding spirals (can wind forever; can only unwind for a finite 
time)

• If angular velocity increases inwards (due to shear) Maxwell stress
will carry angular momentum outwards  (kinematic effect)

• Maxwell stress flux domination due to the correlation of Br and Bθ
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Fluctuations & Spectra

Radius

Velocity

···· Axial
---- Radial
___ Azimuthal

Radius

Magnetic field

···· Axial
---- Radial
___ Azimuthal

• Spectra for 3D solutions are moderately flat at small wavenumbers

– Magnetic energy

• Fluctuations have comparable magnitude both for B and u

⇒ Turbulent Rm ≤ 600

Axial wavenumberAzimuthal wavenumber
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---- Mean magnetic field
···· Rms velocity
___ Rms magnetic field

Rm=31000

---- Mean magnetic field
···· Rms velocity
___ Rms magnetic field

Rm=3100

---- Mean magnetic field
···· Rms velocity
___ Rms magnetic field

Rm=31000

---- Mean magnetic field
···· Rms velocity
___ Rms magnetic field

Rm=30000

---- Mean magnetic field
···· Rms velocity
___ Rms magnetic field

Rm=3000

Time

• If the external axial field is switched off at the boundary, the averaged field 
decays but fluctuations survive for Rm=30000

• Probably, the case with Rm=30000 is a dynamo

Fluctuations and dynamo

⇒Small-scale dynamo ( with turbulent Rm ≤ 600 )

⇒ The MRI-driven turbulence becomes self-sustained at high enough Rm / 
Re and regenerates magnetic field necessary for its own existence 
independently of the initial field that induced MRI in the first place

Time
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Conclusions
• A “scenario” of MRI-driven turbulence (MRIDT) provides very attractive 

rationale for enhanced angular momentum transport
– In turbulent regime MRIDT might act as a (small-scale) dynamo

• Future work on simulations of flows with smaller magnetic Prandtl number 

• MRIDT angular momentum transport 
– is dominated by Maxwell stresses

due to negative correlation of 
radial and azimutal magnetic field 
fluctuations (kinematic effect)

• MRI saturates with highly 3D state of 
MRIDT through the dissipation and 
modification of the background 
velocity toward solid body rotation
(cf. axisymmetric cases: constant 
azimuthal velocity)
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