Saturation and Reversals in Numerical Dynamos

Peter Olson

Magnetic Field Generation in Experiments, Geophysics and Astrophysics

KITP, July 18, 2008

Topics

- Saturation magnetic field intensity in rotating spherical dynamos
- Low frequency variability in the geomagnetic field
- Low frequency variability and polarity reversals in simple geodynamo models

Magnetic Intensity Saturation in Rotating Spherical Shell Dynamos

 $\Lambda = constant$ saturation??

$$\Lambda = rac{\mathsf{\sigma} B_{\mathit{rms}}^2}{\mathsf{\rho} \Omega}$$

$$Ra_Q = \frac{r_c F}{r_i d^2 \Omega^3}$$

F = buoyancy flux

dipole saturation: $Lo = \gamma Ra_Q^{1/3}$; $\gamma \simeq 0.1 - 0.2$

equivalent dipole moment: $M \simeq 4\pi r_c^3 \gamma (\rho/\mu_0)^{1/2} (Fd)^{1/3}$

for the geodynamo yields $M = 7x10^{22} \text{ Am}^2 \text{ with } F = 2x10^{-13} \text{ m}^2 \text{s}^{-3}$

Time interval	Average dipole moment	Reference
160 a	$8.12 \times 10^{22} \ Am^2$	Jackson et al. (2000)
7 Ka	6	Korte and Constable (2005)
10 Ka	8.75 ± 1.6	Valet et al. (2005)
15-50 Ka	4.5	Merrill and McElhinny (1998)
300 Ka	8.4 ± 3.1	Selkin and Tauxe (2000)
800 Ka	7.5 ± 1.5	Valet et al. (2005)
0.8-1.2 Ma	5.3 ± 1.5	Valet et al. (2005)
0.3-5 Ma	5.5 ± 2.4	Juarez and Tauxe (2000)
0.5-4.6 Ma	3.6 ± 2	Yamamoto and Tsunakawa (2005)
5 Ma	7.4 ± 4.3	Kono and Tanaka (1995)
0.3-300 Ma	4.6 ± 3.2	Selkin and Tauxe (2000)

lots of variability!

Low Frequency Geomagnetic Dipole Moment Variability

- "virtual" dipole moment
- obtained from marine sediment magnetization
- polarity transitions & excursions follow dipole collapses
- dipole free decay time in the core: t_d ~ 20 kyr

Geomagnetic Dipole Frequency Spectrum

Numerical Dynamos with Low Frequency Variability

Navier-Stokes

$$E(\frac{\partial u}{\partial t} + u \cdot \nabla u - \nabla^2 u) + 2\hat{z} \times u + \nabla P = EPr^{-1}Ra\frac{r}{r_o}\chi + Pm^{-1}(\nabla \times B) \times B$$

Induction

$$\frac{\partial B}{\partial t} = \nabla \times (u \times B) + Pm^{-1}\nabla^2 B$$

Continuity

$$\nabla \cdot (u, B) = 0$$

Light Elements Transport

$$\frac{\partial \chi}{\partial t} + u \cdot \nabla \chi = Pr^{-1} \nabla^2 \chi - 1$$

$$r_o = \frac{r_c}{D}$$
 $[t] = \frac{D^2}{V}$ $[u] = \frac{V}{D}$

$$[B] = \sqrt{rac{
ho\Omega}{\sigma}} \qquad \qquad [\chi] = (rac{D^2}{
ho})\dot{\chi_o}$$

$$Ra = \frac{\beta g_o D^5 \dot{\chi}_o}{\kappa v^2}$$

Olson, PNAS (2007)

Time Series

$$Ra = 1.9 \times 10^4$$

new scaling:

$$[u]_{\eta} = \frac{\eta}{D}$$

$$[B] = \sqrt{rac{
ho\Omega}{\sigma}}$$

$$[t]_d = \frac{r_c^2}{\pi^2 \eta}$$

Olson, Driscoll & Amit, PEPI (submitted)

Frequency Spectra

Dipole Collapse & Polarity Reversal

QuickTime™ and a Sorenson Video 3 decompressor are needed to see this picture.

Polarity Reversal in Snapshots

Butterfly Diagrams

Lowes Spectra on the cmb versus Time

Summary

- Buoyancy flux saturation:
- o dipole moment M \sim (Fd) $^{1/3}$ [limited applicability]
- o convective velocity U ~ $(d/\Omega)^{1/5}$ F^{2/5}
- ► Low frequency variability:
- KE-ME tradeoff saturation
- o f⁻² f^{-7/3} frequency spectra
- o dipole collapse events
- ∇ Polarity reversals:
- o follow dipole collapse
- o reversed flux precursors
- o energy spectrum cascade