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Cyclone-anticyclone asymmetry in rotating fluids and dy-

namos

• Cyclonic (positive) vorticity is dominant in rotating turbulence at
Rossby numbers of order unity. Anticyclones are unstable except
at low Rossby numbers (Bartello et al., 1994; Morize et al., 2005)

• In shallow-water turbulence, anticyclonic vortices dominate when
the Froude number is increased (Polvani et al., 1994).

• In rotating dynamos, dominant anticyclonic vorticity is produced
from a balance between the Lorentz and Coriolis forces (e.g.
Sakuraba & Kono, 1999).

Here we examine:

• How important is this asymmetry for dynamo action?

• What happens if this asymmetry is disturbed/neutralized?
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Vorticity skewness: magnetic to non-magnetic

• Begin with a convection-driven dynamo state (Ra/Racrit = 6,
Pr = ν/κ = 1, Pm = ν/η = 1, E = ν/ΩL2 = 10−4).

• At td = 12, set B = 0.
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Vorticity skewness: non-magnetic to magnetic

• Begin with a purely convective state (Ra/Racrit = 6, ν/κ = 1,
ν/ΩL2 = 10−4).

• Impose an equatorially antisymmetric Bφ on the flow.
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Structure of Bφ, js, jz

<Bφ > <js > <jz >

∼ −∂Bφ/∂z ∼ ∂Bφ/∂s
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Creation of stronger anticyclones
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Force balance: inner boundary

< [∇× (j×B)]z > <∂uz/∂z> <E[∇2
ω]z >

∼<∂jz/∂z>
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Helicity: magnetic vs. non-magnetic
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Additional helicity is generated by the magnetic field (Busse, 1976).
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Modifying vorticity skewness through the velocity field

(case 1)
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Modifying vorticity skewness (case 2)
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Strong anticyclonic forcing
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Control of vorticity skewness by magnetic means

Impose an equatorially antisymmetric toroidal field:

Bφ = c sin θ (r/ro) z exp(−z2/δ2).
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Kinetic, magnetic energies; vorticity skewness
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Evolution of Br
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Electric current densities
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Vorticity skewness through boundary inhomogeneities
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Concluding remarks
• A vorticity skewness with preferred anticyclonic vorticity is

produced near the equatorial plane in rotating, convective
dynamos from a Lorentz-Coriolis force balance.

• Additional helicity is generated from these strong anticyclones
which, in turn, supports dynamo action.

• Cyclone-anticyclone asymmetry is found to be crucial for dipolar
dynamo action. If this asymmetry is suppressed, dynamo action
weakens/fails.

• Any source of anticyclonic vorticity (magnetic, thermal..) can
amplify a seed magnetic field.
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