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Quantum Computational Complexity

4 Complexity of a quantum state s defined as the minimal A
number of elementary unitary operations applied to a
simple (unentangled) reference state in order to obtain
N the state of interest: y
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Circuit complexity of | (/)> is the minimum number of gates

needed to go from | 0000.» to |@¥ >



Example — Spin/Qubit Chain

* Quantum circuit will start with simple unentangled
reference state, e.q., |R;) = |TT - T).

* Apply simple gates taken from a universal set, acting on a
small number of qubits, e.q., phase shift/Hadamard/CNOT-

* Approximate the state of interest - target state - with
unitary operations built from those gates

ITY = UIR) = g192 - 9n|R).
* With tolerance |T) ~ U|R).
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number of gates needed-
* Depends on the various choices!




Complexity Geometry

- The problem of identifying the optimal circuit was first
addressed by Nielsen and collaborators by employing a geometric
approach in the context of n-qubit chains-

- The basic idea is that the elementary gates form a

representation of the Lie group SU (2” ), and one can then
define a natural geometry on the associated Lie manifold-

- This allows to translate the question of finding the optimal
circuit to that of finding the minimal geodesic in the space of
unitaries U-



- Neilsen et al- approach this question as the Hamiltonian control

problem of finding a time-dependent Hamiltonian H(t) that
constructs the desired unitary

1
U =P exp (—i f dt H(t)) H(t) = Z Y (DM,
0 I
M, - Generalized Pauli matrices

- The control functions Y'(t) specify a tangent vector to a
trajectory in the space of unitaries 1Yr)

U(o) = P exp (—i fog dt Y"(t)M,) o € [0,1]

- We would like to find the shortest (o)) = U(o)|¥r)

path such that
U) =1 U(D[yYr) = [¥r) 1Y)



Circuit Complexity from Nielsen Geometry

- Cost function should satisfy certain properties: continuity,
positivity, triangle inequality-

- Still a lot of freedom
k
dy=[dtS, V' ©  di=[dtS|Y'©)

dp = [ dt ¥, p|Y' (D)
- Penalty factors can be
chosen to favor certain directions
in the circuit space, e*g9-, one or
two-qubit operations:

- Alternative: use the Fubini-Study & H
metric as distance function for

éa ussian states . [llustration from “Quantum Computation as Geometry” M. A. Nielsen, M. R.

Dowling, M. Gu, and A. M. Doherty, Science 311 (2006) 1133-1135.




Complexity evolution

For fast scramblers (systems that spread the effects of
localized perturbations over all the degrees of freedom in a
time logarithmic in the entropy), the complexity of the
state evolved by the Hamiltonian grows linearly for a very
long time:-

K - number of d-o-f
complexity of e \’\/_\/

Crmax = 4% -
. . b A,
maximal complexity- o VA
This is based in counting
. . \ A "-;
arqguments in random unitary — ©- - T

Cfrc L«“ ts on SP!” C ha[ns * Illustration from “quantum complexity and negative curvature” A. Brown, L. Susskind, and Y. Zhao




Complexity in QFT

- Nielsen construction can

be generalized to study 3 -
the complexity of b4 )
Gaussian states in QFT- 3
- For example - the ground L
state of a free scalar 022 +2)
QFT: o e
- Discretize the field _‘
theory on the lattice and a

obtain a system of coupled harmonic oscillators
H = %f d%1x [n(x)z + Vo (x)? +m2q‘b(x)2] - (d spacetime dimension)



Complexity in QFT

- Can be discretized on the lattice and diagonalized by discrete Fourier transform
for periodic lattice
N-1

1
H=5 ) 84 Imf? + o2 ¢ ?]

with tegj=0

o2 4 A yd-1_: 2 (ki L _ 1 vN-1 _2mika)
W = M" + =5 2j=1 SIN (N), xk—ﬁz{ai}:ﬂexp X

- The wavefunction of the ground state is Gauss{an- ,
WP

5:1
(Pl0) = e 2k 2

- Take the reference state to be the ground state of the ultralocal Hamiltonian

H= %j‘ d41x [:ﬂf(::f)2 +M2 + Hzfﬁ(i’f)z]

- Utset bilinear gates in field and momentum operators to move between Gaussian
states, e‘g-,

Qab = EiEfpaﬂ'b



- structure of UV divergences
N-1 k k

C 2 log —k " log(=) +
e = og—~| ~——|log(—=]| +--
el HL o 0 Ho

- Matches expectations from holography where the

complexity is conjectured to be related to the gravitational
action/volume of a certain region in AdS-

- Similarly for fermions, e-g-,
3+7d, Cantfnuum’ f'n' ﬁn fte /!'ne <— Anti-de Sitter ; / Black Hole

1/0 d3‘p Ip| N
Cr=1 =V ——tan" ' — =V /6 + -
=t f R

AdS

Vacuum of free scalar: R. A. Jefferson and R. C. Myers, JHEP 10 (2017) 107,

SC, M. P. Heller, H. Marrochio, and F. Pastawski, Phys. Rev. Lett. 120 no. 12, (2018) 121602.
Vacuum of free fermions: R. Khan, C. Krishnan, and S. Sharma, arXiv:1801.07620,

L. Hackl and R. C. Myers, JHEP 1807 (2018) 139

'\\ 4-Dimensional
Flat Spacetime
(hologram)
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n
Tracing over the right Hilbert space leaves a thermal density
matrix for the Left system:-

1 - “ SR
Pr = Z_Zn e PEn IET[)<ETL| \Slllglﬂdllt} /
g tL - tR
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. A S
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TFD for Free QFT

We will focus on the thermofield double state of a free
scalar QFT with Hamiltonian

1 d
H:HL+HR:§ d“x

N 2
i + (quL) + mquf] + (Lo R)

Again discretizing on the lattice and diagonalizing we end up
with a sum of independent momentum modes:

Every mode consists of two simple harmonic oscillators
H = H H—i[p2+P2+M22 2+ 2] P=mné2""
B n n=oylL R wy (Qf + Q) ; d
n
1

M=§" Wy = (m2 + =Y sin? (%))1/2 §—lattice spacing



The thermofield double for two harmonic oscillators

H = —[PL + P34+ M2w?(Q} + QB)]
is given by _ o= (s 1)
|ITFD) = Z N ) |n>L|n)R T b=ty =2

It is time dependent! The reduced density
matrix of one side is time independent-

Can be also expressed as a unitary acting on the vacuum

= Ne (z EIZEE -z apag) |O)L|O)R ;= %log (1+e

L=z

_Bw

2
Lw
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)e—iwt



Use diagonal modes to decouple the left and right sides

then TFD takes the form /a=%log

ITED(t)) = et 0+(®)|0), x el ® 0-() |0)_

Qi = \[—(QL—QR) P+=%(PLiPR)

~ 1 1 1
04(t) = 5 cos(wt) (QiPy + P1Q) + > sin(wt) (qui — M—wpg

Focus on one of the modes-

We will need to consider more general brlinear generators:
Develop better Framework for Gaussian states:




Focus on pure

éa USS[.an Sta tes Gaussian states

with vanishing one
point function-

In wave-function representation
a\z 1 _
P(q) = {qly) = (;) exp ’—E(a +ib) qzl

All data is given by the two point function (Wick’s theorem)-
Use the covariance matrix

[

G = (p|eagb 4 gbgaly); £ = (q,p)
Explicitly
1 b
A T e AN
WPy wlply) S

Acting with quadratic operators leaves us in this class of Gaussian states-



Quadratic operators
1 qz 2

Jr?1=5(‘¢H”“|‘23’-fi’) E2=T§ E:%:%

These gates go b?and those used for the vacuum, but are needed to
construct the TFD-

The generators above form an S;S%’R) algebra and the U-s form the
associated symplectic group SP(2,R)

We want to act with them to build our circuits

;) = e teKi|y)

Don’t act linearly on the parameters of the wave-function, however they
do act linearly on the covariance matrix:

G, = U,GUT U, =eki K, = (é _01)
0 0
= T — p€K2 =

G3 = UsGUY Uy = eKs Ky = (0 \/E)



Group Structure

Rephrase the circuit in terms of trajectories between covariance matrices
Circuits will take the form G(o) = U(o)GU" (0)-

A general group element can be parameterized as

U = costcoshp —sin@sinhp —sintcoshp + cos@ sinhp
~ \sintcoshp + cos@sinhp costcoshp + sin@ sinhp

With t € [—m,m) and (p,6) can be viewed as polar coordinates in the plane-

For the d, cost function the distance will be given according to the

following metric
[ ds? = dp? + cosh(2p) cosh?(p) dt? + cosh(2p) sinh?(p) d#? — sinh?(2p)dzd6 ]




Finding the minimal geodesics

- Look for geodesic in the space of circuits - symplectic
transformations U(a) = U(p(0),0(0),t(0)) that satisfy

Uu) =1 U(1)GrU)" = Grpp (L)

- The boundary condition is not unique -
there is a one parameter family of
transformations that achieve the task-

- This fixes a spiral in the (p,0,t) space:

- One needs to find the shortest geodesic which
reaches to the spiral under the metric from the
previous slide-

—> [ts length will give the complexity (for the d, cost function)-

-Use the same trajectory to bound the d, complexity-



Results — Complexity of Formation

For a massive theory

The ratio increases exponentially nta up to a cutoff)-
with the mass (and the dimension)- -
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Time dependence — infinite line
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C decreases/increases; saturates with C ~S at t ~f
> free vs fast scrambler,

> state remains Gaussian vs explores full Hilbert space-
(early time transient depends on 1)




Time dependence on the circle

- On the circle have a zero
mode (mode of lowest
frequency)-

- When m=0 complexity not well
defined-

- Introduce small mass as IR
requlator-

- Zero mode causes logarithmic
growth which terminates at
times which are inversely
proportional to the mass-

- Behaves similar to the line
for high temperatures where
the zero mode becomes less
dominant-

- Oscillations with frequency which
is inversely proportional to the circle
length as if two wave packets were
propagating on a circle with the
speed of light in opposite directions:
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Entanglement
entropy

N

A it
%\
} )

Block structure of the covariance matrix-

Time evolution does not influence the thermal blocks-
But the mixed Right-Left blocks change, and so we see
a change of the EE with time:




- When mP K 1 there is an
initial regime with linear B=0.01Land m=0.1/L:
growth at slope proportional [ 1 - 1 1 1 1
to the thermodynamic '

100+
entropy:

P =05C

- The growth terminates at 30.
times of the order of half the .
size of the interval = '

w60

- For longer times there are
oscillations: These would e
disappear on the infinite line:

12 =02CL
' £ =0.15L
1P=01L

40

20+
- T- Hartman, J- Maldacena,
JHEP 05 (20713) 074 pointed
out that this system is similar to ‘
a quench: 0.0
- See also: P- Calabrese and J- L- t/L
Cardy, J- Stat- Mech- 0504,

PO4070 (2005)-




Future direction

- Possible extensions of QFT model - Go beyond Gaussian states:
- Complexity for excited states?

- Ground states of interacting QFTs?
[see: Bhattacharyya, Shekar, Sinha, hep-th/T1808-03705]

- TFD with random phases?
- Gauge theories?

- Complexit
[see: Agon, ﬂ Lots to e )(Plo re! k quant-ph/9806029]
- QFT/path i ary CFT?

build py - Sgp = —ZA,logd, —> Replica trick

build optimal U — C = #gates —s 277727
[see: Caputa et al hep-th/1703-:00456, hep-th/1706-07056, Czech hep-th/1706-00965]

- Strongly interacting systems and concrete connection to “holographic
complexity”?






