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Probability Distributions of Observables

In many-body systems we typically focus on expectation values
iIn some state or density maftrix, e.g.
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Correspond to averages over many measurements.

Cold atoms: access to probability distributions of observables 0
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Probability distributions after quantum quenches
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In weak interaction limit measurements allow to extract
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Very few other results either in, or out of, equilibrium...

A. Can we find situations where probability distributions give
insights significantly beyond expectations values/variances ?

B. Can probability distributions be calculated analyftically ?

Consider lattice spin models = natural observables are
operators O (quantized eigenvalues) that act on sub-systems of

linear size ¢, e.g. sub-system magnetization;



When do we expect (non) trivial prob. distr.?

In states with finite correlation length £ and £<£ usual

“thermodynamic” arguments apply

Po(m) = (¥]6(0 — m)|¥) = ZP r)6(m
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Cases with (i) £—c0 or (ii) £z will be most interesting.

(i) D=1: quantum critical GS (— equilibrium) or long-range int.
(ii) Energy density after QQ should not be too large.



A. Melting of LRO after a "Quantum Quench” EEEEERLIE
in preparation

e Consider a spin-1/2 chain with Hamiltonian

L
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integrable, but essence of what follows has nothing to do with it.

® Prepare the system at time t=0 in a classical Neel state
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Consider the PD of AFM short-range order JEVAEYNCH N
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Initially depends on time, but eventually relaxes fto a stationary
value (“local relaxation”) as (?; is a local operator.



Probability distribution in initial state (t=0):
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What do we expect in the stationary state?



SUAIAGASI((WH  Finite correlation length &

E<K 0.15;-

'S 0.10]

SRO has melted A 0.055_
000bosss - .

| part. relevant for |
| "large quenches” |

e — — .




SUAIAGASI((WH  Finite correlation length &

N 8;2 ] short-ranged
2 0.20!
SRO remains, but SS 813 '
spin-flip symmetry 0.05f . .
should be restored. 0.00b ot eveewenwnnws

-20 -10 0 10 20

Analytic understanding
for large A.




Time evolution for a “large quench” (obtained from iTEBD)

{Prob. dist. = |
inarrow Gaussian |

average
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Here the prob. dist. does not give a lot of extra info (except at

short times)...




Time evolution for a “small quench” (obtained from iTEBD)
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Prob. dist. reveals a lot of physics beyond the average!




Time evolution for an “intermediate quench”

average
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B. Analytic results: Transverse-Field Ising Chain
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Consider QQs e.g. from ground states of H(ho) and determine
PD of transverse subsystem magnetisation:
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How to obtain analytic results after QQ: EeElgl=lg\lrL

Step 1: exact determinant representation for generating function

Known 20x2{ matrix
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Step 2: multiple integral representation
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Step 3: asymptotics from multi-dim stationary phase approx
and summing result over all n

difficult.
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How well does this work?

— Compare to numerically exact results.
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A=0.1, £=200, ho=0, h=0.2 Not bad.

Slight caveat: when y"(1,7,1) becomes very small as a fn of A our
approximation becomes poor. Not a problem for getting the PD.




“Transverse field quench”: prepare system in GS of H(ho),

time evolve with H(h)

ho=3, h=0.2
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. PD for subsystems can reveal interesting physics; can be

universal at critical points.

. PD are not easy to calculate analytically.

. Analytic results for PD of transverse subsystem
magnetisation in TFIM after QQs

. Order parameter after Neel quench in XXZ: interesting
regime after melting of LRO

. Other results: PDs in ground states of critical XXZ chain
and Hubbard model.

. Long-range spin chains/"Kitaev models”: Floquet; formation
of order;...



