Possible manifestations of quantum disordered dynamics in the arrested
relaxation of a molecular ultracold plasma

Eigenstate Thermalization Hypothesis

e.g. Stolow et al.,PCCP 13, 18447 (2011)

Superpositions of states in small quantum systems evolve | MM e MMM
In quantum beats with periodic revivals. o
Quenched observables of very large isolated quantum systems relax .

to states of maximum entropy.

e ETH explains: Even a brief time average of any superposition in a dense
manifold of states fills phase space, looks thermal. Eisert et al. Nature Physics 11, 124 (2015).

e Unimolecular rate models assume energy randomization (RRKM Theory).

But, coherent control can localize energy in an excited molecule. Disordered landscapes can
suppress transport in complex ensembles: Preserve spatial order and retain energy in highly
excited superpositions of states.

e As a paradigm, many-body localization (MBL) in the dynamics of complex systems
compares with coherent control in molecules.

e In MBL, local observables retain a memory of initial conditions for arbitrarily long times.

e Potential to preserve quantum information {Nandkishore & Huse, Annu. Rev. Condens. Mat.
Phys. 6 15-38 (2015); Abanin, Altman, Bloch & Serbyn, arXiv:1804.11065 (2018)}
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Experimental quantum systems that fail to thermalize command a
great deal of interest.

Kondov, et al., PRL, Schreiber, et al. Science Choi et al. Science  Rubio-Abadal et al., Kucsko, et al., PRL,
114 083002 (2015) 349, 842 (2015) 352, 1547 (2016) 1805.00056 (2018) 121, 023601 (2018)
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Highly engineered examples confirm the principle of many-body localization (MBL).
Feature weak dipolar coupling, intricate experimental design & interpretation.

For systems with stronger interactions, can many-body localization arise naturally?
e In the MBL phase, local operators define local integrals of motion (LIOM).
e The LIOM determine how far any particular excitation can propagate.

e |n a quench, can locally emergent conservation laws act to guide the self-assembly
of a spatially evolving quantum system to form a global many-body localized state?



Can the constraints of localization guide self-assembly to an MBL
state?

Experiment: Arrested relaxation in an isolated molecular ultracold plasma

An ultracold plasma evolves from a molecular
Rydberg gas of nitric oxide

Bifurcates. lrreversibly disposes energy
to a reservoir of mass transport.

Quenches to form a strongly
coupled, quasi-neutral, plasma
In a state of arrested relaxation,
far from thermal equilibrium

Integrated electron signal (arb.)
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Results invite the theoretical question whether an observed long lifetime and
evident very low electron temperature reflect self-assembly to a state of many-
body localization far from thermal equilibrium.

Quick overview of the experimental results, model for interpretation



Defined conditions of initial
density and temperature



Differentially pumped skimmed supersonic molecular beam

Two machines: '
— -j R N
R 3‘

Moving grid Plasma TV

P ~10-5 mbar
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He: 1434 ms-" « ono* =5 x 10%2 cm3
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velocty mis M Schulz-Weiling, et al., J. Phys B
49, 193001 (2016)




Selected initial guantum state
Experimental control of initial
density



Experimentally observed dynamics of avalanche and quench
with a theoretical interpretation
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Short-time dynamics
of electron-impact avalanche ionization



SFI captures the avalanche in progress

Ramp delay time = 0ns
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» Shot-to-shot total electron signal accurately
classifies Rydberg gas density.

* Observed relaxation rate conforms well with
classical simulations at all (uniform) densities.
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J. Phys. B 45 (2012) 175302, J. Keller et al, to be published.
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We can measure electron temperature and decay dynamics
by examining the signal as a function of propagation time in z.

80

60

Predicted ps 7rp

o, NOT +€

i N(*S) + OCP)

1
------- uniform model NO*
coupled model 08t
3
0
5 061/
. 2 F
Predicted long- 2k
. L2 0.4 N,
time 7. > 100 K g
- 0.2
| | | R
0 5 10 15 20 0 5
Timein us
t= 100 ns

10 15 20
Time in us

5x 10" cm=3

1012
e
9
3 11

- 10
(N
o == |
a e —_— 1 .
100 64 50 100 150 200 25
Field Vicm
Fraction ionized
02 0.7 0.9 0.960.98 0.99
10 : . s
model

= o

>

£

; o

S

s o

(_>5 0.1 5

o
< o
o
o
00 © ©
0.01 . ‘ | |

19 2.0 3.0 4.0 5.0

rx (mm)



Long-time dynamics:
Ambipolar expansion and predissociation

Measure 7, and plasma lifetime



Expansion in z Vlasov self-similar expansion measured in z

Long-time dynamics lon and electron thermal energy
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Confirm long life & find the missing electron energy in the long-time dynamics projected in x and y



Long-time dynamics evident in plasma images
projected in the x,y plane

Bifurcation and quench
Te — Vi — vy

Canonical density and internal energy
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... or as a function of no ...
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The velocity of bifurcation depends sensitively on initial

Rydberg gas density ... ... we find that regardless of initial density, po
or principal guantum number, ng, the plasma
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.. the same internal enerqy ...
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But, when we test these possible scenarios by classical simulations ...



Simulated evolution of a quenched gas of high-n Rydberg states.

A Rydberg molecule with n = 80 has an orbital radius of 0.3 ym. Forp =4 x 10" cm®
simulation models predict Penning ionization and avalanche on a microsecond timescale

with T, increasing to 50 K or more.
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Simulated evolution of a quenched ultracold plasma with T¢(0) = 5 K

Slow expansion indicates 7. < 5 K. Forp =4 x 10" cm, aws = 1.7 ym, and I'. = 2. Coupled
rate-equation models and MD simulations call for correlation energy release, three-body
recombination, Rydberg relaxation and significant electron heating.
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Simulated evolution of a quenched ultracold plasma with T¢(0) = 5 K

Slow expansion indicates 7. < 5 K. Forp =4 x 10" cm, aws = 1.7 ym, and I'. = 2. Coupled
rate-equation models and MD simulations call for correlation energy release, three-body
recombination, Rydberg relaxation and significant electron heating.
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Simulated evolution of a quenched ultracold plasma with T¢(0) = 5 K

Slow expansion indicates 7. < 5 K. Forp =4 x 10" cm, aws = 1.7 ym, and I'. = 2. Coupled
rate-equation models and MD simulations call for correlation energy release, three-body
recombination, Rydberg relaxation and significant electron heating.
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Classical simulation Classical simulation

Experiment
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Integrated electron signal (arb.)

Properties of the arrested state determined by experiment

Avalanched, as clearly measured by field ionization spectrum.
Evidence for electrons bound by low energy to individual ions

(Rydberg molecules, np > 80) or to multiple ions (plasma electrons).

Quenched, as demonstrated by bifurcation to
12 . separating volumes with very little internal energy

Width (mm)
o N &b O

- Cold, as confirmed by very slow plasma expansion,
~ iIndicating in particular a low electron temperature.

0 100 200 300 400 500
Time (ps)

. | Stable, little if any dissociation of nitric oxide observed
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despite predissociative lifetime of 1 us averaged over /
for np = 80.

al (arb.)

Universal, self-assembles to an arrested phase of common
density and internal energy, regardless of starting conditions.

y-z Integrated electron sign
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Non-classical. Observed long-time dynamics of this phase do
not accord with classical coupled-rate equation simulations.




Path to the arrested state

e At high density avalanche proceeds on a ns timescale:
Initial energy transport by electron - Rydberg collisions
(classical). 1012

e transport stops

e \Watch for effects of electron - NO*
collisional I-mixing. 44f(2) bands
move to higher field.

* Transport driven by electron -
Rydberg collisions.

e After 150 ns, transport at high
density stops.

* Predissociation depletes according
ton and /.

e The plasma approaches an
arrested state with no free
electrons.
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The delayed SFI spectrum signifies Rydberg electrons weakly bound to a single NO™ ion, or the
exciton-like state of an electron bound to a more distant NO* ion immersed in an NO* - e~ dielectric.



Energy transport in a basis of Rydberg molecules and NO* -- e~ excitons
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Dipole-dipole coupling drives flip-flop state mixing interaction

Conceptualize in low order:
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Dipoles i and j couple via & in a third-order process giving rise
to a self-interaction described by an Ising term with an amplitude, U ..

Yy
Burin, Phys Rev B 92 104428

Collect in a spin model with dipole-dipole and Ising terms:

Heg = Y €57 + Z Jij (S8 + h.e.) + ) Ui S;S;
i 1,J ,J

To gauge properties, assume a state of localization and then
ask whether delocalizing perturbations destabilize this phase

Sous & Grant, PRL 120 110601,
arXiv:1808.07479



Energy transport in a basis of Rydberg molecules and NO™ -- e~ excitons

Spin flip-flop interactions form resonantly coupled pair states

Long-range dipole-dipole and Ising interactions form off- AN — 4 -
diagonal matrix elements that allow energy to propagate i 1) = [T dg) = [ o) = T )
L
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In a shell from R, to 2R, , a central spin finds N, resonant interactions:
i

t/R), t . . .
=p— Critical. Does not diverge with system size.
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Ising interactions mix resonant pairs. For a density of pseudospins ¢ = pny , a central pair finds N,

resonant interactions in a shell from RZ to 2RZ :
6
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Diverges as system volume.  Yaoetal.,, PRL 113 243002

N, = ¢R;

for an extended-pair relation between ny and R, .

J
Ising interactions sufficient to delocalize system when U(R) ~ Do’ exceeds J(R) ~ el
p

A system of density p extended to a distance R. such that U(R.) = J(R,) contains V. dipoles:

Upon arrest, the ultracold plasma
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N, = <7> For J =2 GHz, W = 500 GHz, N, = 3 x 10’ contains 100 times fewer than NV,
dipoles




Inevitable fluctuations create locally thermalized volumes - Griffiths regions.

This loss of plasma ions and energetic
molecules reduces the density of dipoles,
and creates a weakened bath (sparser
distribution of increased level spacings).

In this state of diminished mixing, the
Griffiths region dissipates to a void of
Nno consequence.

The molecular ultracold plasma intrinsically
opposes delocalization.

Consider a thermal inclusion in an MBL bulk.

Thermal core mixes /-bits according to e %/
{ = decay length

As a classical region, the thermal ultracold plasma
Inclusion has a characteristic signature: Avalanche
dynamics owing to the collisions of Rydberg
molecules with free electrons.

High-frequency electron-Rydberg collisions increase
T,, and drive Rydberg population to lower n, where
predissociation rapidly causes the plasma to dissipate
as neutral N(*S) + O(3P).
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Conclusions

Fast avalanche to plasma in NO.
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Images confirm liquid-like behaviour in which plasma irreversibly
sequesters energy in a reservoir of mass transport

Dynamics suggest a robust process of self-organization to reach
a state of arrested relaxation, far from thermal equilibrium.

Disorder on a scale that appears to inhibit energy transport from
Rydberg molecules to electrons.

Predissociation in the molecular ultracold

plasma may act to diminish the delocalizing
power of Griffiths regions
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Conclusions

Fast avalanche to plasma in NO.
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