Possible manifestations of quantum disordered dynamics in the arrested relaxation of a molecular ultracold plasma

Eigenstate Thermalization Hypothesis
Superpositions of states in small quantum systems evolve in quantum beats with periodic revivals.
e.g. Stolow et al.,PCCP 13, 18447 (2011)

$t(\mathrm{ps})$

Quenched observables of very large isolated quantum systems relax to states of maximum entropy.

- ETH explains: Even a brief time average of any superposition in a dense manifold of states fills phase space, looks thermal. Eisert et al. Nature Physics 11, 124 (2015).
- Unimolecular rate models assume energy randomization (RRKM Theory).

But, coherent control can localize energy in an excited molecule. Disordered landscapes can suppress transport in complex ensembles: Preserve spatial order and retain energy in highly excited superpositions of states.

- As a paradigm, many-body localization (MBL) in the dynamics of complex systems compares with coherent control in molecules.
- In MBL, local observables retain a memory of initial conditions for arbitrarily long times.
- Potential to preserve quantum information \{Nandkishore \& Huse, Annu. Rev. Condens. Mat. Phys. 6 15-38 (2015); Abanin, Altman, Bloch \& Serbyn, arXiv:1804.11065 (2018)\}

Experimental quantum systems that fail to thermalize command a great deal of interest.

${ }^{40} \mathrm{~K}$ response to a magnetic impulse

Schreiber, et al. Science

$$
\begin{array}{ll}
349,842(2015) & 352,1547(2016)
\end{array}
$$

${ }^{40 \mathrm{~K}}$ CDW even to odd lattice sites

${ }^{87} \mathrm{Rb}$ relaxation of density distribution

Rubio-Abadal et al., Kucsko, et al., PRL, 1805.00056 (2018) 121, 023601 (2018)

Critical thermalization in 3D NV diamond

Highly engineered examples confirm the principle of many-body localization (MBL). Feature weak dipolar coupling, intricate experimental design \& interpretation.

For systems with stronger interactions, can many-body localization arise naturally?

- In the MBL phase, local operators define local integrals of motion (LIOM).
- The LIOM determine how far any particular excitation can propagate.
- In a quench, can locally emergent conservation laws act to guide the self-assembly of a spatially evolving quantum system to form a global many-body localized state?

Can the constraints of localization guide self-assembly to an MBL state?

Experiment: Arrested relaxation in an isolated molecular ultracold plasma

An ultracold plasma evolves from a molecular Rydberg gas of nitric oxide

Bifurcates. Irreversibly disposes energy to a reservoir of mass transport.

Quenches to form a strongly coupled, quasi-neutral, plasma in a state of arrested relaxation, far from thermal equilibrium

Results invite the theoretical question whether an observed long lifetime and evident very low electron temperature reflect self-assembly to a state of manybody localization far from thermal equilibrium.

Quick overview of the experimental results, model for interpretation

Defined conditions of initial density and temperature

Differentially pumped skimmed supersonic molecular beam

Two machines:

Moving grid

Plasma TV

- NO 10\% in 5 bar He, Ar
- 0.5 mm nozzle, 1 mm skimmer
- $\rho_{\mathrm{NO}}=1.6 \times 10^{14} \mathrm{~cm}^{-3}$
- $\rho_{\mathrm{NO}^{*}} \approx 5 \times 10^{12} \mathrm{~cm}^{-3}$
- $T_{\|}{ }^{\infty}=500 \mathrm{mK}$
- $T_{\perp}{ }^{\infty} \approx 5 \mathrm{mK}$

Selected initial quantum state Experimental control of initial density

Experimentally observed dynamics of avalanche and quench with a theoretical interpretation

Short-time dynamics of electron-impact avalanche ionization

SFI captures the avalanche in progress

- Shot-to-shot total electron signal accurately classifies Rydberg gas density.
- Observed relaxation rate conforms well with classical simulations at all (uniform) densities.

Shell-model coupled rate-equation simulation

We can measure electron temperature and decay dynamics by examining the signal as a function of propagation time in z.

$t=100 \mathrm{~ns}$

Long-time dynamics:
 Ambipolar expansion and predissociation Measure T_{e} and plasma lifetime

Confirm long life \& find the missing electron energy in the long-time dynamics projected in x and y

Long-time dynamics evident in plasma images projected in the x, y plane

Bifurcation and quench

$$
T_{e} \rightarrow v_{i} \rightarrow v_{x}
$$

Canonical density and internal energy

Apparent effect of ion - Rydberg resonant charge exchange

Quenches T_{e}, equalizes velocities, quenches T_{i}

The recoil energy depends on the avalanche amplitude.

The velocity of bifurcation depends sensitively on initial Rydberg gas density ...

... and principal quantum number.
n_{0}

39

48

56

65

78
... the same internal energy ...

... and the same long lifetime.

$n>80$ Rydberg gas
$T_{e}<5 \mathrm{~K}$ ultracold plasma
$\tau>1 \mathrm{~ms}$. Exceeds the predissociative lifetime of all but highest n

Time ($\mu \mathrm{s}$)
But, when we test these possible scenarios by classical simulations ...

Simulated evolution of a quenched gas of high-n Rydberg states.

A Rydberg molecule with $n=80$ has an orbital radius of $0.3 \mu \mathrm{~m}$. For $\rho=4 \times 10^{10} \mathrm{~cm}^{-3}$ simulation models predict Penning ionization and avalanche on a microsecond timescale with T_{e} increasing to 50 K or more.
$n_{0}=80$ Rydberg gas

Simulated evolution of a quenched ultracold plasma with $T_{e}(0)=5 \mathrm{~K}$

Slow expansion indicates $T_{e}<5 \mathrm{~K}$. For $\rho=4 \times 10^{10} \mathrm{~cm}^{-3}, a_{w s}=1.7 \mu \mathrm{~m}$, and $\Gamma_{e}=2$. Coupled rate-equation models and MD simulations call for correlation energy release, three-body recombination, Rydberg relaxation and significant electron heating.
$n_{0}=80$ Rydberg gas
$T_{e}<5 \mathrm{~K}$ ultracold plasma

Simulated evolution of a quenched ultracold plasma with $T_{e}(0)=5 \mathrm{~K}$

Slow expansion indicates $T_{e}<5 \mathrm{~K}$. For $\rho=4 \times 10^{10} \mathrm{~cm}^{-3}, a_{w s}=1.7 \mu \mathrm{~m}$, and $\Gamma_{e}=2$. Coupled rate-equation models and MD simulations call for correlation energy release, three-body recombination, Rydberg relaxation and significant electron heating.
$n_{0}=80$ Rydberg gas
$T_{e}<5 \mathrm{~K}$ ultracold plasma

Simulated evolution of a quenched ultracold plasma with $T_{e}(0)=5 \mathrm{~K}$

Slow expansion indicates $T_{e}<5 \mathrm{~K}$. For $\rho=4 \times 10^{10} \mathrm{~cm}^{-3}, a_{w s}=1.7 \mu \mathrm{~m}$, and $\Gamma_{e}=2$. Coupled rate-equation models and MD simulations call for correlation energy release, three-body recombination, Rydberg relaxation and significant electron heating.
$n_{0}=80$ Rydberg gas
$T_{e}<5 \mathrm{~K}$ ultracold plasma

Experiment

$30 \mu s$

$4 \times 10^{10} \mathrm{~cm}^{-3}$

Classical simulation $n=80$ Rydberg gas

$30 \mu \mathrm{~s}$

$42 \times 100^{8} \mathrm{~cm}^{-3}$

Classical simulation free electron plasma

$30 \mu \mathrm{~s}$

$42 \times 100^{0} \mathrm{~cm}^{-3}$

Properties of the arrested state determined by experiment

Avalanched, as clearly measured by field ionization spectrum. Evidence for electrons bound by low energy to individual ions (Rydberg molecules, $n_{0}>80$) or to multiple ions (plasma electrons).

Quenched, as demonstrated by bifurcation to separating volumes with very little internal energy

Cold, as confirmed by very slow plasma expansion, indicating in particular a low electron temperature.

Stable, little if any dissociation of nitric oxide observed $\mathrm{NO}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{NO}^{*} \longrightarrow \mathrm{~N}\left({ }^{4} \mathrm{~S}\right)+\mathrm{O}\left({ }^{3} \mathrm{P}\right)$ after $10 \mu \mathrm{~s}$, despite predissociative lifetime of $1 \mu \mathrm{~s}$ averaged over l for $n_{0}=80$.

Universal, self-assembles to an arrested phase of common density and internal energy, regardless of starting conditions.

Non-classical. Observed long-time dynamics of this phase do not accord with classical coupled-rate equation simulations.

Path to the arrested state

- At high density avalanche proceeds on a ns timescale: Initial energy transport by electron - Rydberg collisions (classical).

- Watch for effects of electron - NO* collisional l-mixing. $44 f(2)$ bands move to higher field.
- Transport driven by electron Rydberg collisions.
- After 150 ns , transport at high density stops.
- Predissociation depletes according to n and l.
- The plasma approaches an arrested state with no free electrons.

The delayed SFI spectrum signifies Rydberg electrons weakly bound to a single NO^{+}ion, or the exciton-like state of an electron bound to a more distant NO^{+}ion immersed in an $\mathrm{NO}^{+}-\mathrm{e}^{-}$dielectric.

Energy transport in a basis of Rydberg molecules and $\mathrm{NO}^{+}--\mathrm{e}^{-}$excitons

h_{i}, complicated for a Rydberg molecule, extends with slightly greater complexity to describe an $\mathrm{NO}^{+}-\mathrm{e}^{-}$exciton in a background ion-e- dielectric

$$
\left\{\left|e_{1}\right\rangle,\left|e_{2}\right\rangle,\left|e_{3}\right\rangle \ldots\right\}
$$

Dipole-dipole coupling drives flip-flop state mixing interaction Conceptualize in low order:

$$
\begin{aligned}
& \left|\downarrow_{i}, \uparrow_{j}, \uparrow_{k}\right\rangle \xrightarrow{\hat{S}_{i}^{+} \hat{S}_{j}^{-}}\left|\uparrow_{i}, \downarrow_{j}, \uparrow_{k}\right\rangle \xrightarrow{\hat{S}_{j}^{+} \hat{S}_{k}^{-}}\left|\uparrow_{i}, \uparrow_{j}, \downarrow_{k}\right\rangle \xrightarrow{\hat{S}_{k}^{+} \hat{S}_{i}^{-}}\left|\downarrow_{i}, \uparrow_{j}, \uparrow_{k}\right\rangle
\end{aligned}
$$

Dipoles i and j couple via k in a third-order process giving rise to a self-interaction described by an Ising term with an amplitude, $U_{i j}$ Burin, Phys Rev B 92104428

Collect in a spin model with dipole-dipole and Ising terms:

$$
H_{\mathrm{eff}}=\sum_{i} \epsilon_{i} \hat{S}_{i}^{z}+\sum_{i, j} J_{i j}\left(\hat{S}_{i}^{+} \hat{S}_{j}^{-}+h . c .\right)+\sum_{i, j} U_{i j} \hat{S}_{i}^{z} \hat{S}_{j}^{z}
$$

To gauge properties, assume a state of localization and then ask whether delocalizing perturbations destabilize this phase

Energy transport in a basis of Rydberg molecules and $\mathrm{NO}^{+}-\mathrm{e}^{-}$excitons

Spin flip-flop interactions form resonantly coupled pair states

$$
\left|\downarrow_{i}, \uparrow_{j}\right\rangle \leftrightarrows\left|\uparrow_{i}, \psi_{j}\right\rangle
$$

Long-range dipole-dipole and Ising interactions form offdiagonal matrix elements that allow energy to propagate

$$
\left|\downarrow_{i}, \uparrow_{j}\right\rangle \leftrightarrows\left|\uparrow_{i}, \downarrow_{j}\right\rangle \longleftrightarrow\left|\downarrow_{k}, \uparrow_{l}\right\rangle \leftrightarrows\left|\uparrow_{k}, \downarrow_{l}\right\rangle
$$

In a shell from $R_{x y}$ to $2 R_{x y}$, a central spin finds $N_{x y}$ resonant interactions: $\frac{t_{i j}}{r_{i j}^{3}} \geq\left|\epsilon_{i}-\epsilon_{j}\right| \in W$

$$
N_{x y}=\left(\rho R_{x y}^{3}\right) \frac{t / R_{x y}^{3}}{W}=\rho \frac{t}{W}
$$

Critical. Does not diverge with system size.

Ising interactions mix resonant pairs. For a density of pseudospins $\varrho=\rho N_{x y}$, a central pair finds N_{z} resonant interactions in a shell from R_{z} to $2 R_{z}$:

$$
N_{z}=\varrho R_{z}^{3} \frac{D / R_{z}^{6}}{t / R_{x y}^{3}}=\rho^{2} \frac{t}{W} R_{z}^{3}
$$

for an extended-pair relation between $R_{x y}$ and R_{z}. Diverges as system volume. Yao et al., PRL 113243002
Ising interactions sufficient to delocalize system when $U(R) \approx D \varrho^{2}$ exceeds $J(R) \approx \frac{J}{\rho R^{3}}$.
A system of density ρ extended to a distance R_{c} such that $U\left(R_{c}\right)=J\left(R_{c}\right)$ contains N_{c} dipoles:

$$
N_{c}=\left(\frac{W}{J}\right)^{4} \text { For } J=2 \mathrm{GHz}, W=500 \mathrm{GHz}, N_{c}=3 \times 10^{9}
$$

Upon arrest, the ultracold plasma contains 100 times fewer than N_{c} dipoles

Inevitable fluctuations create locally thermalized volumes - Griffiths regions.

The molecular ultracold plasma intrinsically opposes delocalization.

Consider a thermal inclusion in an MBL bulk.
Thermal core mixes l-bits according to $e^{-R / \zeta}$, $\zeta=$ decay length

As a classical region, the thermal ultracold plasma inclusion has a characteristic signature: Avalanche dynamics owing to the collisions of Rydberg molecules with free electrons.

High-frequency electron-Rydberg collisions increase T_{e}, and drive Rydberg population to lower n, where predissociation rapidly causes the plasma to dissipate as neutral $\mathrm{N}\left({ }^{4} \mathrm{~S}\right)+\mathrm{O}\left({ }^{3} \mathrm{P}\right)$.

This loss of plasma ions and energetic molecules reduces the density of dipoles, and creates a weakened bath (sparser distribution of increased level spacings).

In this state of diminished mixing, the Griffiths region dissipates to a void of no consequence.

Conclusions

Fast avalanche to plasma in NO.

Quench. Anomalously slow plasma expansion.

Predissociation halts.

Dynamics suggest a robust process of self-organization to reach a state of arrested relaxation, far from thermal equilibrium.
Disorder on a scale that appears to inhibit energy transport from Rydberg molecules to electrons.

Predissociation in the molecular ultracold plasma may act to diminish the delocalizing power of Griffiths regions

THE UNIVERSITY OF BRITISH COLUMBIA

Department of Chemistry

Alexander von Humboldt Stiftung/Foundation

Conclusions

Fast avalanche to plasma in NO.

Quench. Anomalously slow plasma expansion.

Predissociation halts.

Dynamics suggest a robust process of self-organization to reach a state of arrested relaxation, far from thermal equilibrium.
Disorder on a scale that appears to inhibit energy transport from Rydberg molecules to electrons.

Predissociation in the molecular ultracold plasma may act to diminish the delocalizing power of Griffiths regions

