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Motivation
• Goal: to describe the structure and dynamics of quantum 

many-body entanglement.

• Entanglement Entropy - a tool to quantify entanglement

• Quantum many-body system in a pure state

• Reduced density matrix of subsystem 

• Entanglement (Renyi) Entropy 
 
 
measures the degree of entanglement between     and

• Renyi index   . Limit of          , von Neumann entropy 

• Entanglement region    (can be disconnected in general)
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Motivation
• Entanglement entropy is useful to construct many quantum 

information measures

• Different Renyi indices → entanglement spectrum

• Different entanglement regions → mutual information … 
 

• They are useful in describing structures and dynamics of 
quantum many-body entanglement

• Ryu-Takayanagi formula and holographic duality

• Design tensor / neural network structures

• Analyze quantum dynamics (many-body localization, 
thermalization, driven systems)

• …
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Permutation Group Formulation
• Partial trace can be evaluated using permutations 
 
 
 
 
 

• A system of      qudits (  -dim local Hilbert space)

• Renyi index    sets the degree of the permutation

• Entanglement region specified by group element acting on 
each qudit channel  
 
 
                                                  represented as 
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Entanglement Features
• Entanglement Features (EF) of a pure state  
 

• or equivalently as exponentiate entanglement entropy 
 

• mapping to statistical mechanics problems 
 
 
 

• All entanglement features: exponentiated entanglement 
entropies of over all entanglement regions and to all Renyi 
indices.
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Entanglement Features
• Is entanglement feature just a rewriting of entanglement 

entropy?

• Basically yes.

• But organized as partition functions (leads to new insights)

• And becomes useful when we discuss quantum 
information dynamics

• Quantum dynamics: described by unitary evolution  
 
 

• Entanglement Features (EF) of a unitary evolution 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Entanglement Features
• Any relation between state EF and unitary EF?  
 
 

• Growth of entanglement entropy from product state

• Evolution of state

• Evolution of entanglement features 
 
 

• More generally, how does the unitary evolution of state 
induces (non-unitary) evolution of entanglement features?
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Random Tensor Network
• Focus on the 2nd Renyi entanglement features (         )

•               : Ising variables (identity = 1, swap = -1) 
 
 

• What is the structure of this Ising model?  
- Random Tensor Network (RTN) provides a microscopic 
construction

• Random Tensor Network (RTN)

n = 2

Hayden, Nezami, Qi, Thomas, Walter, Yang 2016

• On each vertex: rand. tensor

• On each link: bond dim.

• RTN: an ensemble of  
quantum many-body states
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Random Tensor Network
• Entanglement Features of RTN  
 

• Ensemble average over random tensors 
 
 
 
 

• Boundary spins → entanglement region

• Entanglement ~ spin correlation

• Entanglement entropy ~ free energy (tracing out bulk   )
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Holographic Duality
• Multi-spin interaction in the Ising model reflects the non-local 

structure of many-body entanglement 
 
 
 
 
 

• Entanglement structure approximately resolved by tensor 
network (PEPS)

• as entanglement pairs (two-spin interaction)

• at the price of introducing bulk tensors (projections)

• bulk network geometry ~ emergent holographic geometry

≈?



Machine Learning Spacial Geometry
• Ryu-Takayanagi: entanglement = area  
 

• area of minimal surface in the bulk ~  
domain wall energy in the Ising model

• ER = EPR = Ising coupling

• Deep Learning: introducing hidden (bulk) variables to resolve 
complicated correlation in visible (boundary) variables

• Ising model → Deep Boltzmann Machine

• Input: entanglement features

• Train: network connectivity

• Result: holographic geometry
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Ā

�(A)

YZ You, Z Yang, XL Qi, 1709.01223



Entanglement Transition from Holographic RTN
• Entanglement Transitions: area-law to volume-law transition, 

e.g. many-body localization to thermalization transition

• Phase transition in holographic Ising model  
 
 
 
 
 
 
 

• Transition driven by bond  
dimension of RTN

Ferromagnet (ordered) Paramagnet (disordered)
LA LA

domain wall energy ~ LA domain wall energy ~ const.
volume-law entanglement area-law entanglement

R Vasseur, AC Potter, YZ You, 
AWW Ludwig, 1807.07082



Dynamics of Entanglement Feature
• We can "Quantize" the entanglement features

• State EF → vector:

• Unitary EF → matrix:

• Unitary evolution of a state  
 
 
will induce a (generally) non-unitary evolution  
of its entanglement features 
 

• As long as we know how to compute       , we know 
everything about the full entanglement dynamics.

• In general a hard problem, but for random unitary circuit, 
the answer is known.
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Random Unitary Circuit
• Independent Haar random unitary gates (with locality) 
 
 
 
 
 
 
 
 
 

•                                    enhance ferromagnetic correlations

• Thermalization: para = area-law → ferro = volume-law

• Mode decay 

|W (t+1)i = F̂ |W (t)i (Floquet-like)

• In each Floquet cycle: two steps 

• Projection (proj. out domain walls) 
 

• followed by Quantum fluctuations
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Random Hamiltonian Dynamics
• Random Hamiltonian dynamics: unitary evolution generated 

by random Hamiltonian  

• A quantum many-body system of     qudits

• each qudit:    dimensional Hilbert space

• Total Hilbert space dimension

• Radom Hamiltonian 

• a             Hermitian matrix acting on all qudits

• randomly drawn from Gaussian unitary ensemble  

• Hamiltonian is non-local (i.e. not a sum of local / few-body 
operators), modeling a strongly thermalizing / chaotic 
system.

YZ You, Y Gu, 1803.10425
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Random Hamiltonian Dynamics
• Random Hamiltonian v.s. Random Unitary

• Random Unitary: locality, energy not conserved

• Random Hamiltonian: energy conserved, non-local

• Tensor product structure of the Hilbert space still allows us to 
specify entanglement regions and define entanglement 
features

• Goal: Entanglement Features of  
 

• averaged over ensemble  
 

• focused on Renyi index = 2 case.
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Now we present the exact result for fearly(�) and flate(�)
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The spectral form factors R[k] were calculated in Ref. 38. We copy it here for the completeness of the presentation.
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FIG. 10: Ensemble averaged 2nd-Rényi entropies S(2) of two-
qudit unitaries for (a) d = 2 and (b) d = 4. The small circles
are numerical simulations on 1000 random Hamiltonians. The
curves are theoretical results based on Eq. (21) (without tak-
ing the large D limit). The S

(2) for Haar random unitaries
are marked out by dashed lines according to Eq. (A7).

fluctuation is negligible that the ensemble basically traces
out a well-defined entropy trajectory under the random
Hamiltonian dynamics. This implies that we can study
the dynamics of the ensemble averaged entanglement fea-

tures hW (n)
U iU2E(t) in the large d limit.

4. Averaged Entanglement Features of Two Qudits

According to Eq. (21), we can analytically calculate
the two non-trivial 2nd-Rényi entanglement features
W (2)(AC) and W (2)(AD) for the two-qudit random
Hamiltonian dynamics, as defined in Eq. (A1). The re-
sult is presented in terms of the Renyi entropies S(2)(AC)
and S(2)(AD) and benchmarked with numerics in Fig. 10.
The theoretical curves match the numerical data points
nicely. The late-time limit of the entanglement features
can be calculated from Eq. (32),

W (2)

1 (AC) = 2
⇣
d2 +

1

d2 + 1
� 4

d2 + 3

⌘
,

W (2)

1 (AD) = 2
⇣
d2 � 1 +

3

d2 + 1
� 4

d2 + 3

⌘
,

(A6)

both of which deviate from that of Haar unitaries given
by Eq. (33)

W (2)

Haar
(AC) = W (2)

Haar
(AD) =

2d4

d2 + 1
. (A7)

The amount of deviation reduces with the qudit dimen-
sion d and becomes negligible in the large d limit, as can
be seen by comparing Fig. 10(a) and (b). In conclusion,
the entropy trajectory under the random Hamiltonian
dynamics in two-qudit system can be traced out based
on Eq. (21).

Appendix B: Exact Result of Entanglement Features

1. Weingarten Functions

The exact form of the Weingarten function on Sn group
is given by (for D � n)

Wgg =
1

(n!)2

X

�

��(1)2��(g)

s�,D(1)
, (B1)

where the sum is over all partitions � of n. Here ��

is the character of Sn corresponding to the partition �
and s�,D is the Schur polynomial of � such that s�,D(1)
is simply the dimension of the representation of U(D)
corresponding to �. The Weingarten function is a class
function, which means it only depends on the cycle type
⌫(g).
For S4 group, the Weingarten functions can be enumer-

ated as in Tab. IV. They have a common denominator,
which will be denoted as

Z4(D) =
4Y

k=0

(D2 � k2). (B2)

Using this result, we can carry out the S4 group summa-
tion in Eq. (21) exactly and obtain the ensemble averaged
2nd Rényi entanglement feature W (2) to all orders of D.

TABLE IV: Weingarten functions on S4 group.

⌫(g) Wg
g

(1,1,1,1) (D4 � 8D2 + 6)/Z4(D)

(2,1,1) �D(D2 � 4)/Z4(D)

(3,1) (2D2 � 3)/Z4(D)

(4) �5D/Z4(D)

(2,2) (D2 + 6)/Z4(D)

2. Entanglement Features (Exact)

To all orders of D, the 2nd Rényi entanglement feature
still take the early-time and late-time form as in Eq. (25)
and Eq. (26), which we repeat here

W (2)[�, ⌧ ] = Wearly[�, ⌧ ] +Wlate[�, ⌧ ],

Wearly[�, ⌧ ] =
X

�=±1

D
1
2 (��⌧+�)Fearly(�),

Wlate[�, ⌧ ] =
X

�1,2=±1

D
1
2 (�1�+�2⌧+�1�2)Flate(�1�2).

(B3)

The common denominator Z4(D) of the Weingarten
function defined in Eq. (B2) can be factored out, which
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allows us to define

Fearly(�) =
fearly(�)

Z4(D)
, Flate(�) =

flate(�)

Z4(D)
. (B4)

Now we present the exact result for fearly(�) and flate(�)
as follows

fearly(+1) =D3
�
4(D2 + 6)(R[00] �R[0]) + 16(2D2 � 3)R[11̄] + (D2 � 3)(D2 � 4)R[22̄] � 4D2(D2 + 1)R[11̄0]

� 4D2(D2 � 4)R[21̄1̄] +D2(D2 � 3)(D2 � 4)R[111̄1̄]

�
,

fearly(�1) =2D5
�
10(R[0] �R[00])� 4(D2 + 1)R[11̄] � (D2 � 4)R[22̄]

+ 4(2D2 � 3)R[11̄0] + (D2 � 3)(D2 � 4)R[21̄1̄] �D2(D2 � 4)R[111̄1̄]

�
,

flate(+1) =D9/2
�
� 2(D2 � 14)R[0] + (D4 � 11D2 + 8)R[00] � 40R[11̄] � (D2 � 4)R[22̄] + 4(D2 + 6)R[11̄0]

+ 6(D2 � 4)R[21̄1̄] �D2(D2 � 4)R[111̄1̄]

�
,

flate(�1) =D9/2
�
(D2 + 1)(D2 � 12)R[0] � 2(D4 � 12D2 + 12)R[00] + 8(D2 + 6)R[11̄] + 3(D2 � 4)R[22̄]

� 20D2R[11̄0] � 2D2(D2 � 4)R[21̄1̄] + 3D2(D2 � 4)R[111̄1̄]

�
.

(B5)

The spectral form factors R[k] were calculated in Ref. 38. We copy it here for the completeness of the presentation.

R[0](t) =R[00](t) = 1,

R[11̄](t) =R[11̄0](t) = r1(t)
2 + (1� r2(t))/D,

R[22̄](t) =R[11̄](2t),

R[211̄](t) =r1(2t)r1(t)
2 + (�r1(2t)r2(t)r3(2t)� 2r1(t)r2(2t)r3(t) + +r1(2t)

2 + 2r1(t)
2)/D

+ (2r2(3t)� r2(2t)� 2r2(t) + 1)/D2,

R[111̄1̄](t) =r1(t)
4 + (�2r1(t)

2r2(t)r3(2t)� 4r1(t)
2r2(t) + 2r1(2t)r1(t)

2 + 4r1(t)
2)/D

+ (2r2(t)
2 + r2(t)

2r3(2t)
2 + 8r1(t)r2(t)r3(t)� 2r1(2t)r2(t)r3(2t)� 4r1(t)r2(2t)r3(t)

+ r1(2t)
2 � 4r1(t)

2 � 4r2(t) + 2)/D2

+ (�7r2(2t) + 4r2(3t) + 4r2(t)� 1)/D3,

(B6)

where the functions r1,2,3(t) are defined as

r1(t) =
J1(2t)

t
, r2(t) =

⇣
1� |t|

2D

⌘
⇥
⇣
1� |t|

2D

⌘
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W (2)[�, ⌧ ] =
4

Xσ
Xτ

V † V † V † V †

V V V V

Λ Λ Λ* Λ*

x

FIG. 1: The diagrammatic representation of Eq. (16) for the
n = 2 case. The generalization to n > 2 cases is straightfor-
ward.

B. Ensemble Average

Now we are in the position to calculate the ensem-
ble averaged nth-Rényi entanglement features defined in
Eq. (7). Plugging in the definition of entanglement fea-
ture in Eq. (4) and express the unitary evolution in its di-
agonal basis following Eq. (11), we can rearrange Eq. (7)
into

W (n)[�, ⌧ ] = hTr(V ⇤V †)⌦nX�(V ⇤⇤V †)⌦nX⌧ i
= hTrV ⌦2n(⇤⌦n ⌦ ⇤⇤⌦n)V †⌦2n(X� ⌦X⌧ )Xx| {z }

(see Fig. 1 for diagrammatic representation)

i (16)

We have introduced Xx to represent the large swap opera-
tor between the ⇤ layers and the ⇤⇤ layers at the bottom
of the diagram in Fig. 1. The trace operator Tr acting
on the diagram simply connects the top legs to the bot-
tom legs by imposing a “periodic boundary condition”
in the vertical direction. The ensemble average includes
both averaging V and V † over Haar random unitary en-
sembles and averaging ⇤ over the energy levels of GUE
random matrices.

Let us first take the Haar ensemble average of V and
V †. The result reads82,

W (n)[�, ⌧ ] =
X

g,h2S2n

Wgg�1hhTr(⇤⌦n ⌦ ⇤⇤⌦n)Xgi

TrXh(X� ⌦X⌧ )Xx,

(17)

where g 2 S2n stands for permutations among the 2n lay-
ers, and Xg denotes the representation of g in the H⌦2n

Hilbert space. Wgg is the Weingarten function, which
appeared in the integration of Haar random unitaries.
Wgg is a class function in g and is a rational function in
the Hilbert space dimension D. In the large D limit, the

Weingarten function (for S2n group) has the asymptotic
form

Wgg = D�4n+#(g)
Y

i

(�)⌫i(g)�1C⌫i(g)�1 + · · · , (18)

where #(g) is the number of cycles in g and ⌫i(g) is the
length of the ith cycle in g. Cm = (2m)!/m!(m + 1)! is
the Catalan number.
We then carry out the ensemble average over energy

levels. According to Eq. (15), the result can be ex-
pressed in terms of the spectral form factor as hTr(⇤⌦n⌦
⇤⇤⌦n)Xgi = R(n)

g TrXg. So the problem boils down to
evaluating various traces of permutation operators, which
is essentially a problem of counting permutation cycles.
To evaluate the trace TrXh(X� ⌦ X⌧ )Xx, we note that
every permutation matrix in this expression is a direct
product of the small permutations that acts indepen-
dently in the quantum channel of each qudit. So the
result can be factorized to

TrXh(X� ⌦X⌧ )Xx =
Y

i

d�Kh(�i,⌧i), (19)

where Kh(�i, ⌧i) = #(h(�i ⌦ ⌧i)x) is a cycle counting
function.
Putting all pieces together, Eq. (17) becomes

W (n)[�, ⌧ ] =
X

g,h2S2n

Wgg�1hR
(n)
g D#(g)�Kh[�,⌧ ], (20)

where Kh[�, ⌧ ] =
1

N

P
i Kh(�i, ⌧i). The time dependence

enters from the spectral form factor R(n)
g (t) defined in

Eq. (15). This gives the general formula for the nth-Rényi
entanglement feature averaged over the ensemble E(t).
In the following, we will restrict to the n = 2 case and
discuss several applications.

IV. 2ND RÉNYI ENTANGLEMENT FEATURES

A. Ising Formulation

For n = 2, Eq. (20) reduces to

W (2)[�, ⌧ ] =
X

g,h2S4

Wgg�1hR
(2)

g D#(g)�Kh[�,⌧ ]. (21)

where � = �1 ⇥ �2 ⇥ · · · ⇥ �N and similar for ⌧ . Here
�i, ⌧i 2 S2 are identity or swap operators. But it will
be more intuitive to treat them as Ising variables living
on the input and output channels of the unitary gate re-
spectively, and think ofKh(�i, ⌧i) as an energy functional
that describes the Ising couplings between them. In this
regard, we will assign ±1 values to the S2(= Z2) group
element as

�i, ⌧i =

⇢
+1 for ,
�1 for .

(22)

hTr i



Result of Entanglement Features
• To the leading order in 

5

Then the energy functional Kh(�i, ⌧i) can be enumerated
as in Tab. I for all h 2 S4. To evaluate Eq. (21) we also

need to know the spectral form factor R(2)

g for all g 2 S4.

We can first express R(n)
g (t) in terms of R[k](t). Their

correspondences are listed in Tab. II. These spectral form
factors R[k](t) are calculated in Ref. 38, whose notation
is di↵ered from ours by a factor of D to some power, see
the last column of Tab. II.

TABLE I: The Ising coupling energy Kh(�i, ⌧i) for di↵erent
permuations h 2 S4.

h 2 S4 Kh(�i, ⌧i)

, � 1
2�i⌧i � 3

2

, + 1
2�i⌧i � 3

2

, , , � 1
2�i � 1

2⌧i � 2

, , , + 1
2�i + 1

2⌧i � 2

, , , � 1
2�i + 1

2⌧i � 2

, , , + 1
2�i � 1

2⌧i � 2

+ 1
2�i � 1

2⌧i � 3

� 1
2�i + 1

2⌧i � 3

� 1
2�i � 1

2⌧i � 3

+ 1
2�i + 1

2⌧i � 3

TABLE II: Spectral form factors R
(2)
g for di↵erent permuta-

tions g 2 S4 in terms of R[k]. The last column shows the
corresponding notation in Ref. 38.

g 2 S4 R
(2)
g Ref. 38

R[111̄1̄]
1

D4R4

R[22̄]
1

D2R4,2

, R[21̄1̄]
1

D3R4,1

, R[00]

, , , R[11̄0]
1

D2R2

, , , , , R[0]

, , , , , , , R[11̄]
1

D2R2

No approximation has been made up to this point. If
we substitute the exact expressions of both the Wein-

garten function Wgg�1h and the spectral form factor R(2)

g

to Eq. (21) and carry out the double summation over the
S4 group, we can arrive at the exact result of the en-
semble averaged entanglement features W (2). However,
the expression is rather complicated to present here (see
Appendix B for the full expression), so we will just show

the result to the leading order in D = dN ,

W (2)[�, ⌧ ] = R[111̄1̄]D
3+�⌧

2

� 2(R[111̄1̄] �R[21̄1̄])D
1��⌧

2

+ (R[00] �R[111̄1̄])(D
2+�+⌧

2 +D
2���⌧

2 )

� (2R[00] �R[0] + 2R[21̄1̄] � 3R[111̄1̄])

⇥ (D
��⌧

2 +D
��+⌧

2 ) + · · · ,

(23)

where the �, ⌧ and �⌧ are respectively the mean mag-
netizations on both input and output sides and the Ising
correlation across the unitary gate,

� =
1

N

X

i

�i, ⌧ =
1

N

X

i

⌧i, �⌧ =
1

N

X

i

�i⌧i. (24)

Therefore to the leading order inD, the 2nd-Rènyi entan-
glement features W (2) of random Hamiltonian dynamics
can be given by Eq. (23) as Boltzmann weights (partition
weights) of the Ising variables � and ⌧ . The time depen-
dence of the the entanglement features are captured by
the spectral form factors R[k], whose large-D asymptotic
behavior was given by Eq. (14). Based on this result,
we can further explore the entanglement growth and the
OTOC under random Hamiltonian dynamics.

B. Holographic Interpretations

Given W (2)[�, ⌧ ] in the form of a Boltzmann weight,
we would like to understand, what kind of Ising model
does W (2)[�, ⌧ ] describe? The most naive approach is
to follow the standard idea of statistical mechanics and
assume that there is a single Ising Hamiltonian H[�, ⌧ ]
that models the Boltzmann weight via W (2)[�, ⌧ ] /
e�H[�,⌧ ]. Such a Hamiltonian would necessarily involve
multi-spin interactions in the general form of H[�, ⌧ ] =P

Jj1···jn
i1···im�i1 · · ·�im⌧j1 · · · ⌧jn , which requires exponen-

tially (in N) many couplings to parameterize. This naive
approach does not provide us a more intuitive under-
standing of the entanglement features.
How to e�ciently represent the “big data” of entangle-

ment features? An idea developed in the machine learn-
ing community is to encode the exponential amount of
data in the polynomial amount of neural network param-
eters if the data has strong internal correlations. In this
approach, hidden neurons are introduced into the neural
network to mediate the many-body correlations among
the visible neurons. We will take the similar philosophy
to model the entanglement features as a superposition of
several Ising models with hidden variables, such that each
Ising model only contains few-body interactions that can
be e�ciently parameterized by a polynomial amount of
couplings.
As can be seen from Eq. (23), there are four terms

in W (2)[�, ⌧ ], each term can be interpreted as an Ising
model with at most two-body interactions. Putting these
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Then the energy functional Kh(�i, ⌧i) can be enumerated
as in Tab. I for all h 2 S4. To evaluate Eq. (21) we also

need to know the spectral form factor R(2)

g for all g 2 S4.

We can first express R(n)
g (t) in terms of R[k](t). Their

correspondences are listed in Tab. II. These spectral form
factors R[k](t) are calculated in Ref. 38, whose notation
is di↵ered from ours by a factor of D to some power, see
the last column of Tab. II.

TABLE I: The Ising coupling energy Kh(�i, ⌧i) for di↵erent
permuations h 2 S4.

h 2 S4 Kh(�i, ⌧i)

, � 1
2�i⌧i � 3

2

, + 1
2�i⌧i � 3

2

, , , � 1
2�i � 1

2⌧i � 2

, , , + 1
2�i + 1

2⌧i � 2

, , , � 1
2�i + 1

2⌧i � 2

, , , + 1
2�i � 1

2⌧i � 2

+ 1
2�i � 1

2⌧i � 3

� 1
2�i + 1

2⌧i � 3

� 1
2�i � 1

2⌧i � 3

+ 1
2�i + 1

2⌧i � 3

TABLE II: Spectral form factors R
(2)
g for di↵erent permuta-

tions g 2 S4 in terms of R[k]. The last column shows the
corresponding notation in Ref. 38.

g 2 S4 R
(2)
g Ref. 38

R[111̄1̄]
1

D4R4

R[22̄]
1

D2R4,2

, R[21̄1̄]
1

D3R4,1

, R[00]

, , , R[11̄0]
1

D2R2

, , , , , R[0]

, , , , , , , R[11̄]
1

D2R2

No approximation has been made up to this point. If
we substitute the exact expressions of both the Wein-

garten function Wgg�1h and the spectral form factor R(2)

g

to Eq. (21) and carry out the double summation over the
S4 group, we can arrive at the exact result of the en-
semble averaged entanglement features W (2). However,
the expression is rather complicated to present here (see
Appendix B for the full expression), so we will just show

the result to the leading order in D = dN ,

W (2)[�, ⌧ ] = R[111̄1̄]D
3+�⌧

2

� 2(R[111̄1̄] �R[21̄1̄])D
1��⌧

2

+ (R[00] �R[111̄1̄])(D
2+�+⌧

2 +D
2���⌧

2 )

� (2R[00] �R[0] + 2R[21̄1̄] � 3R[111̄1̄])

⇥ (D
��⌧

2 +D
��+⌧

2 ) + · · · ,

(23)

where the �, ⌧ and �⌧ are respectively the mean mag-
netizations on both input and output sides and the Ising
correlation across the unitary gate,

� =
1

N

X

i

�i, ⌧ =
1

N

X

i

⌧i, �⌧ =
1

N

X

i

�i⌧i. (24)

Therefore to the leading order inD, the 2nd-Rènyi entan-
glement features W (2) of random Hamiltonian dynamics
can be given by Eq. (23) as Boltzmann weights (partition
weights) of the Ising variables � and ⌧ . The time depen-
dence of the the entanglement features are captured by
the spectral form factors R[k], whose large-D asymptotic
behavior was given by Eq. (14). Based on this result,
we can further explore the entanglement growth and the
OTOC under random Hamiltonian dynamics.

B. Holographic Interpretations

Given W (2)[�, ⌧ ] in the form of a Boltzmann weight,
we would like to understand, what kind of Ising model
does W (2)[�, ⌧ ] describe? The most naive approach is
to follow the standard idea of statistical mechanics and
assume that there is a single Ising Hamiltonian H[�, ⌧ ]
that models the Boltzmann weight via W (2)[�, ⌧ ] /
e�H[�,⌧ ]. Such a Hamiltonian would necessarily involve
multi-spin interactions in the general form of H[�, ⌧ ] =P

Jj1···jn
i1···im�i1 · · ·�im⌧j1 · · · ⌧jn , which requires exponen-

tially (in N) many couplings to parameterize. This naive
approach does not provide us a more intuitive under-
standing of the entanglement features.
How to e�ciently represent the “big data” of entangle-

ment features? An idea developed in the machine learn-
ing community is to encode the exponential amount of
data in the polynomial amount of neural network param-
eters if the data has strong internal correlations. In this
approach, hidden neurons are introduced into the neural
network to mediate the many-body correlations among
the visible neurons. We will take the similar philosophy
to model the entanglement features as a superposition of
several Ising models with hidden variables, such that each
Ising model only contains few-body interactions that can
be e�ciently parameterized by a polynomial amount of
couplings.
As can be seen from Eq. (23), there are four terms

in W (2)[�, ⌧ ], each term can be interpreted as an Ising
model with at most two-body interactions. Putting these
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terms together is like a statistical superposition of dif-
ferent Ising models defined on di↵erent background ge-
ometries (graph connectivities) with weights that are not
necessarily positive. The superposition of Ising models
can be considered as a kind of gravitational fluctuation,
as the lattice structure (graph connectivity) of the Ising
model is changing from model to model. On each fixed
background, the Ising variables have no (connected) cor-
relation beyond two-body. But once the gravitational
fluctuations are introduced, complicated many-body cor-
relations will be generated among all Ising variables.

If we introduce some auxiliary degrees of freedom in
the holographic bulk, we can separate the entanglement
features in Eq. (23) into two terms,

W (2)[�, ⌧ ] = Wearly[�, ⌧ ] +Wlate[�, ⌧ ], (25)

where Wearly governs the early-time behavior and Wlate

governs the late-time behavior (as to be justified soon)

Wearly[�, ⌧ ] =
X

�=±1

D
1
2 (��⌧+�)Fearly(�),

Wlate[�, ⌧ ] =
X

�1,2=±1

D
1
2 (�1�+�2⌧+�1�2)Flate(�1�2).

(26)

Auxiliary Ising variables � (or �1,2) are introduced as the
bulk degrees of freedom, whose fluctuations are governed
by the partition weight Fearly(�) (or Flate(�1�2)), which
can be directly read o↵ from Eq. (23),

Fearly(�) =

(
R[111̄1̄]D � = +1,

�2(R[111̄1̄] �R[21̄1̄])D � = �1;

Flate(�) =

8
><

>:

(R[00] �R[111̄1̄])D
1
2 � = +1,

�(2R[00] �R[0] + 2R[21̄1̄]

�3R[111̄1̄])D
1
2 � = �1.

(27)

If we trace out the boundary freedoms � and ⌧ , we can
obtain the e↵ective theory for the bulk freedom �, from
which we can evaluate the expectation value of the weight
functions F̄early,late = hFearly,late(�)i�. They characterize
the relative importance between the two models Wearly

and Wlate. We plot F̄early,late(t) as a function of time t in
Fig. 2(a). There is a crossover between F̄early and F̄late

around an order-one time scale tc ⇡ 0.58 (in unit of the
inverse of the energy scale of the GUE Hamiltonian). So
the early (late) time entanglement features are indeed
dominated by Wearly (Wlate).

In the early time, the entanglement features are dom-
inated by Wearly = Tr� e�HearlyFearly, which can be de-
scribed by an Ising Hamiltonian with a bulk variable �,

Hearly[�, ⌧ ; �] = � ln d

2

X

i

��i⌧i �
lnD

2
�. (28)

The last term is a strong Zeeman field that pins the bulk
variable to � = +1. Then the first term simply describes
a direct coupling between input and output along each

FIG. 2: (a) The weight functions F̄early and F̄late v.s. time t,
showing the crossover from the early-time model Wearly to the
late-time model Wlate. Holographic Ising models in (b) the
early time Wearly and (c) the late time Wlate. Each dot is an
Ising variable and each bond corresponds to a ferromagnetic
Ising coupling. The light triangles in (b) denotes the three-
body interaction between boundary and bulk.

quantum channels separately, as illustrated in Fig. 2(b).
This is indeed the entanglement feature expected for the
unitary gate close to the identity. In most cases, the
feedback e↵ect from the first term will not be able to
overturn the strong Zeeman pinning of the second term,
unless the input and output variables are anti-polarized,
i.e., �⌧ ' �1, which corresponds to choosing the en-
tanglement region to be either the input or the output
channels only. In this case, the bulk fluctuates strongly
and the entanglement features are dominated by 1/D ef-
fects. Apart from this strong fluctuation limit, the bulk
will be well behaved and the corresponding holographic
geometry is a fragmented space (i.e. each quantum chan-
nels are far separated from each other in the holographic
space because there is almost no entanglement among
them).
In the late time, the entanglement features are dom-

inated by Wlate = Tr[�] e
�HlateFlate, which can be de-

scribed by an Ising Hamiltonian with two bulk variables
� = [�1, �2],

Hlate[�, ⌧ ; �] = � ln d

2

X

i

(�1�i + �2⌧i)�
lnD

2
�1�2. (29)

The late-time model only contains two-body interactions
as illustrated in Fig. 2(c). All the input (output) vari-
ables couples to �1 (�2) with coupling strength ln d/2.
The bulk variables �1 and �2 themselves couples strongly
with the strength lnD/2 (which is N times stronger
than ln d/2). As shown in Ref. 27, the holographic Ising
model implies to a random tensor network description (of
the unitary gate) with the same network geometry. In
the tensor network description, all quantum information
from the input side enters the tensor �1 gets scrambled.
The scrambled information are then emitted from the
tensor �2 to the output side. This implies that �1 and �2
can be considered as a pair of temporally entangled black
hole and white hole in the holographic bulk, matching
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terms together is like a statistical superposition of dif-
ferent Ising models defined on di↵erent background ge-
ometries (graph connectivities) with weights that are not
necessarily positive. The superposition of Ising models
can be considered as a kind of gravitational fluctuation,
as the lattice structure (graph connectivity) of the Ising
model is changing from model to model. On each fixed
background, the Ising variables have no (connected) cor-
relation beyond two-body. But once the gravitational
fluctuations are introduced, complicated many-body cor-
relations will be generated among all Ising variables.

If we introduce some auxiliary degrees of freedom in
the holographic bulk, we can separate the entanglement
features in Eq. (23) into two terms,

W (2)[�, ⌧ ] = Wearly[�, ⌧ ] +Wlate[�, ⌧ ], (25)

where Wearly governs the early-time behavior and Wlate

governs the late-time behavior (as to be justified soon)
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Auxiliary Ising variables � (or �1,2) are introduced as the
bulk degrees of freedom, whose fluctuations are governed
by the partition weight Fearly(�) (or Flate(�1�2)), which
can be directly read o↵ from Eq. (23),

Fearly(�) =

(
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If we trace out the boundary freedoms � and ⌧ , we can
obtain the e↵ective theory for the bulk freedom �, from
which we can evaluate the expectation value of the weight
functions F̄early,late = hFearly,late(�)i�. They characterize
the relative importance between the two models Wearly

and Wlate. We plot F̄early,late(t) as a function of time t in
Fig. 2(a). There is a crossover between F̄early and F̄late

around an order-one time scale tc ⇡ 0.58 (in unit of the
inverse of the energy scale of the GUE Hamiltonian). So
the early (late) time entanglement features are indeed
dominated by Wearly (Wlate).

In the early time, the entanglement features are dom-
inated by Wearly = Tr� e�HearlyFearly, which can be de-
scribed by an Ising Hamiltonian with a bulk variable �,

Hearly[�, ⌧ ; �] = � ln d
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The last term is a strong Zeeman field that pins the bulk
variable to � = +1. Then the first term simply describes
a direct coupling between input and output along each

FIG. 2: (a) The weight functions F̄early and F̄late v.s. time t,
showing the crossover from the early-time model Wearly to the
late-time model Wlate. Holographic Ising models in (b) the
early time Wearly and (c) the late time Wlate. Each dot is an
Ising variable and each bond corresponds to a ferromagnetic
Ising coupling. The light triangles in (b) denotes the three-
body interaction between boundary and bulk.

quantum channels separately, as illustrated in Fig. 2(b).
This is indeed the entanglement feature expected for the
unitary gate close to the identity. In most cases, the
feedback e↵ect from the first term will not be able to
overturn the strong Zeeman pinning of the second term,
unless the input and output variables are anti-polarized,
i.e., �⌧ ' �1, which corresponds to choosing the en-
tanglement region to be either the input or the output
channels only. In this case, the bulk fluctuates strongly
and the entanglement features are dominated by 1/D ef-
fects. Apart from this strong fluctuation limit, the bulk
will be well behaved and the corresponding holographic
geometry is a fragmented space (i.e. each quantum chan-
nels are far separated from each other in the holographic
space because there is almost no entanglement among
them).
In the late time, the entanglement features are dom-

inated by Wlate = Tr[�] e
�HlateFlate, which can be de-

scribed by an Ising Hamiltonian with two bulk variables
� = [�1, �2],

Hlate[�, ⌧ ; �] = � ln d

2

X
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(�1�i + �2⌧i)�
lnD

2
�1�2. (29)

The late-time model only contains two-body interactions
as illustrated in Fig. 2(c). All the input (output) vari-
ables couples to �1 (�2) with coupling strength ln d/2.
The bulk variables �1 and �2 themselves couples strongly
with the strength lnD/2 (which is N times stronger
than ln d/2). As shown in Ref. 27, the holographic Ising
model implies to a random tensor network description (of
the unitary gate) with the same network geometry. In
the tensor network description, all quantum information
from the input side enters the tensor �1 gets scrambled.
The scrambled information are then emitted from the
tensor �2 to the output side. This implies that �1 and �2
can be considered as a pair of temporally entangled black
hole and white hole in the holographic bulk, matching
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terms together is like a statistical superposition of dif-
ferent Ising models defined on di↵erent background ge-
ometries (graph connectivities) with weights that are not
necessarily positive. The superposition of Ising models
can be considered as a kind of gravitational fluctuation,
as the lattice structure (graph connectivity) of the Ising
model is changing from model to model. On each fixed
background, the Ising variables have no (connected) cor-
relation beyond two-body. But once the gravitational
fluctuations are introduced, complicated many-body cor-
relations will be generated among all Ising variables.

If we introduce some auxiliary degrees of freedom in
the holographic bulk, we can separate the entanglement
features in Eq. (23) into two terms,

W (2)[�, ⌧ ] = Wearly[�, ⌧ ] +Wlate[�, ⌧ ], (25)

where Wearly governs the early-time behavior and Wlate

governs the late-time behavior (as to be justified soon)
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D
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2 (��⌧+�)Fearly(�),

Wlate[�, ⌧ ] =
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D
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2 (�1�+�2⌧+�1�2)Flate(�1�2).

(26)

Auxiliary Ising variables � (or �1,2) are introduced as the
bulk degrees of freedom, whose fluctuations are governed
by the partition weight Fearly(�) (or Flate(�1�2)), which
can be directly read o↵ from Eq. (23),

Fearly(�) =

(
R[111̄1̄]D � = +1,

�2(R[111̄1̄] �R[21̄1̄])D � = �1;

Flate(�) =
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(R[00] �R[111̄1̄])D
1
2 � = +1,

�(2R[00] �R[0] + 2R[21̄1̄]

�3R[111̄1̄])D
1
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(27)

If we trace out the boundary freedoms � and ⌧ , we can
obtain the e↵ective theory for the bulk freedom �, from
which we can evaluate the expectation value of the weight
functions F̄early,late = hFearly,late(�)i�. They characterize
the relative importance between the two models Wearly

and Wlate. We plot F̄early,late(t) as a function of time t in
Fig. 2(a). There is a crossover between F̄early and F̄late

around an order-one time scale tc ⇡ 0.58 (in unit of the
inverse of the energy scale of the GUE Hamiltonian). So
the early (late) time entanglement features are indeed
dominated by Wearly (Wlate).

In the early time, the entanglement features are dom-
inated by Wearly = Tr� e�HearlyFearly, which can be de-
scribed by an Ising Hamiltonian with a bulk variable �,

Hearly[�, ⌧ ; �] = � ln d

2

X

i

��i⌧i �
lnD

2
�. (28)

The last term is a strong Zeeman field that pins the bulk
variable to � = +1. Then the first term simply describes
a direct coupling between input and output along each
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FIG. 2: (a) The weight functions F̄early and F̄late v.s. time t,
showing the crossover from the early-time model Wearly to the
late-time model Wlate. Holographic Ising models in (b) the
early time Wearly and (c) the late time Wlate. Each dot is an
Ising variable and each bond corresponds to a ferromagnetic
Ising coupling. The light triangles in (b) denotes the three-
body interaction between boundary and bulk.

quantum channels separately, as illustrated in Fig. 2(b).
This is indeed the entanglement feature expected for the
unitary gate close to the identity. In most cases, the
feedback e↵ect from the first term will not be able to
overturn the strong Zeeman pinning of the second term,
unless the input and output variables are anti-polarized,
i.e., �⌧ ' �1, which corresponds to choosing the en-
tanglement region to be either the input or the output
channels only. In this case, the bulk fluctuates strongly
and the entanglement features are dominated by 1/D ef-
fects. Apart from this strong fluctuation limit, the bulk
will be well behaved and the corresponding holographic
geometry is a fragmented space (i.e. each quantum chan-
nels are far separated from each other in the holographic
space because there is almost no entanglement among
them).
In the late time, the entanglement features are dom-

inated by Wlate = Tr[�] e
�HlateFlate, which can be de-

scribed by an Ising Hamiltonian with two bulk variables
� = [�1, �2],

Hlate[�, ⌧ ; �] = � ln d

2

X

i

(�1�i + �2⌧i)�
lnD

2
�1�2. (29)

The late-time model only contains two-body interactions
as illustrated in Fig. 2(c). All the input (output) vari-
ables couples to �1 (�2) with coupling strength ln d/2.
The bulk variables �1 and �2 themselves couples strongly
with the strength lnD/2 (which is N times stronger
than ln d/2). As shown in Ref. 27, the holographic Ising
model implies to a random tensor network description (of
the unitary gate) with the same network geometry. In
the tensor network description, all quantum information
from the input side enters the tensor �1 gets scrambled.
The scrambled information are then emitted from the
tensor �2 to the output side. This implies that �1 and �2
can be considered as a pair of temporally entangled black
hole and white hole in the holographic bulk, matching

Elate[�, ⌧ ; �] = � ln d

2

X

i

(�1�i + �2⌧i)�
lnD

2
�1�2
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terms together is like a statistical superposition of dif-
ferent Ising models defined on di↵erent background ge-
ometries (graph connectivities) with weights that are not
necessarily positive. The superposition of Ising models
can be considered as a kind of gravitational fluctuation,
as the lattice structure (graph connectivity) of the Ising
model is changing from model to model. On each fixed
background, the Ising variables have no (connected) cor-
relation beyond two-body. But once the gravitational
fluctuations are introduced, complicated many-body cor-
relations will be generated among all Ising variables.

If we introduce some auxiliary degrees of freedom in
the holographic bulk, we can separate the entanglement
features in Eq. (23) into two terms,

W (2)[�, ⌧ ] = Wearly[�, ⌧ ] +Wlate[�, ⌧ ], (25)

where Wearly governs the early-time behavior and Wlate

governs the late-time behavior (as to be justified soon)
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Auxiliary Ising variables � (or �1,2) are introduced as the
bulk degrees of freedom, whose fluctuations are governed
by the partition weight Fearly(�) (or Flate(�1�2)), which
can be directly read o↵ from Eq. (23),

Fearly(�) =

(
R[111̄1̄]D � = +1,

�2(R[111̄1̄] �R[21̄1̄])D � = �1;

Flate(�) =
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If we trace out the boundary freedoms � and ⌧ , we can
obtain the e↵ective theory for the bulk freedom �, from
which we can evaluate the expectation value of the weight
functions F̄early,late = hFearly,late(�)i�. They characterize
the relative importance between the two models Wearly

and Wlate. We plot F̄early,late(t) as a function of time t in
Fig. 2(a). There is a crossover between F̄early and F̄late

around an order-one time scale tc ⇡ 0.58 (in unit of the
inverse of the energy scale of the GUE Hamiltonian). So
the early (late) time entanglement features are indeed
dominated by Wearly (Wlate).

In the early time, the entanglement features are dom-
inated by Wearly = Tr� e�HearlyFearly, which can be de-
scribed by an Ising Hamiltonian with a bulk variable �,

Hearly[�, ⌧ ; �] = � ln d
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The last term is a strong Zeeman field that pins the bulk
variable to � = +1. Then the first term simply describes
a direct coupling between input and output along each
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FIG. 2: (a) The weight functions F̄early and F̄late v.s. time t,
showing the crossover from the early-time model Wearly to the
late-time model Wlate. Holographic Ising models in (b) the
early time Wearly and (c) the late time Wlate. Each dot is an
Ising variable and each bond corresponds to a ferromagnetic
Ising coupling. The light triangles in (b) denotes the three-
body interaction between boundary and bulk.

quantum channels separately, as illustrated in Fig. 2(b).
This is indeed the entanglement feature expected for the
unitary gate close to the identity. In most cases, the
feedback e↵ect from the first term will not be able to
overturn the strong Zeeman pinning of the second term,
unless the input and output variables are anti-polarized,
i.e., �⌧ ' �1, which corresponds to choosing the en-
tanglement region to be either the input or the output
channels only. In this case, the bulk fluctuates strongly
and the entanglement features are dominated by 1/D ef-
fects. Apart from this strong fluctuation limit, the bulk
will be well behaved and the corresponding holographic
geometry is a fragmented space (i.e. each quantum chan-
nels are far separated from each other in the holographic
space because there is almost no entanglement among
them).
In the late time, the entanglement features are dom-

inated by Wlate = Tr[�] e
�HlateFlate, which can be de-

scribed by an Ising Hamiltonian with two bulk variables
� = [�1, �2],

Hlate[�, ⌧ ; �] = � ln d

2

X

i

(�1�i + �2⌧i)�
lnD

2
�1�2. (29)

The late-time model only contains two-body interactions
as illustrated in Fig. 2(c). All the input (output) vari-
ables couples to �1 (�2) with coupling strength ln d/2.
The bulk variables �1 and �2 themselves couples strongly
with the strength lnD/2 (which is N times stronger
than ln d/2). As shown in Ref. 27, the holographic Ising
model implies to a random tensor network description (of
the unitary gate) with the same network geometry. In
the tensor network description, all quantum information
from the input side enters the tensor �1 gets scrambled.
The scrambled information are then emitted from the
tensor �2 to the output side. This implies that �1 and �2
can be considered as a pair of temporally entangled black
hole and white hole in the holographic bulk, matching

� = +1

�1
�2



Thermalization and Quantum Chaos
• Two approaches to describe Thermalization

• Equilibrium (static) approach: eigenstate thermalization 
hypothesis, level statistics, volume-law entanglement …

• Dynamical approach: quantum chaos, information 
scrambling, OTOC (butterfly effect), entropy growth …

• Random Hamiltonian: (over)simplified model of ETH

• Many measures of quantum chaos (OTOC, entropy growth) 
can be formulated as entanglement features of unitary.

• Goal: learn about typical quantum chaotic behavior of many-
body systems that exhibit eigenstate thermalization.

• Tool: Entanglement features of random Hamiltonian 
dynamics W (2)[�, ⌧ ] = hW (2)

U [�, ⌧ ]iU2E(t)



Thermalization and Quantum Chaos
• Operator-averaged OTOC  
 
 
 
 
 
 

• Entropy growth from product state  
 
 
 
(not a linear growth in time, 
due to non-local Hamiltonian)
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OA,OB
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D
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FIG. 6: Operator-averaged OTOC as a function of time in
the logarithmic scale, for qubits (d = 2) in the limit of N !
1, calculated according to Eq. (44). (a) The disjoint case
NA\B = 0 with di↵erent operator size NA = NB . (b) Fixed
operator size at NA = NB = 20 with di↵erent overlap NA\B .
The solid curve is the OTOC and the dashed curves traces
out the envelope function.

To be concrete, let us consider a more specific case
when the operators OA and OB are of the same size
NA = NB , and their supports overlap over NA\B qu-
dits. In the limit that dNA ⌧ dN , the typical behaviors
of the operator-averaged OTOC are shown in Fig. 6. In
the disjoint case Fig. 6(a) when NA\B = 0, the OTOC
deviates from 1 as

OTOC ' 1� 2t2 + · · · (t ! 0), (47)

and approaches to saturation (to the leading order of d)
as

OTOC ' 2

d2NA
+

1

⇡2t6
. (48)

The saturation time is td = (dNA/⇡)1/3/
p
2. Within the

intermediate time range 1 . t . td, the envelope of the
OTOC exhibits the t�6 power law behavior, which has
been discussed in Ref. 39,63,87. Increasing the operator
size NA will both suppress the saturation value and delay
the saturation time exponentially, as shown in Fig. 6(a).
Now if we fix the operator size and allows the opera-
tors OA and OB to overlap in their supports, the initial
OTOC d�2NA\B will be suppressed with NA\B exponen-
tially, but the t�6 power law behavior in the intermediate
time range remains, as demonstrated in Fig. 6(b).

C. Entanglement Growth after a Quench

The entanglement features of the Hamiltonian gen-
erated unitary evolution can be applied to study the
entanglement growth after a quantum quench.2,3,6 The
quantum quench problem we will discuss here is to start
with an initial product state | (0)i and evolve it by
U(t) = e�iHt to the final state | (t)i = U(t)| (0)i. Gen-
erally, the quantum entanglement will grow in time and

saturates to the thermal limit if the Hamiltonian is quan-
tum chaotic. The entanglement features of the final state
| (t)i is all encoded in the entanglement features of U(t).
To reveal their relation, let us first define the entangle-
ment features for a generic quantum many-body state | i
as32

V (n)
 [⌧ ] = Tr(| ih |)⌦nX⌧ , (49)

where n is the Rényi index and X⌧ is the representation
of ⌧ 2 S⇥N

n in the n-replicated Hilbert space H⌦n. The
entanglement features of a state is directly related to its
entanglement entropies by

S(n)
 [⌧ ] =

1

1� n
lnV (n)

 [⌧ ], (50)

with the entanglement region A specified by the permu-
tation ⌧ following Eq. (6).
If the state | (t)i = U(t)| (0)i is obtained from the

unitary evolution U(t), the entanglement features of the

state V (n)
 (t)[⌧ ] will be related to the entanglement fea-

tures of the unitary evolution W (n)
U(t)[�, ⌧ ] by the following

generic form

V (n)
 (t)[⌧ ] =

X

[�]

W (n)
U(t)[�

�1, ⌧ ]�(n)
 (0)[�], (51)

where �(n)
 (0)[�] is some function of � 2 S⇥N

n that is deter-

mined by the initial state | (0)i. It is not the entangle-
ment feature of the initial state, but can be determined
from that, via

V (n)
 (0)[⌧ ] =

X

[�]

W (n)
U(0)

[��1, ⌧ ]�(n)
 (0)[�]

=
X

[�]

d#(��1⌧)�(n)
 (0)[�],

(52)

which is just an application of Eq. (51) to t = 0. Here
#(g) denotes the cycle number of the permutation g. If
the initial state is a product state, we say that it is entan-
glement featureless, in the sense that its entanglement

features V (n)
 (0)[⌧ ] = 1 are trivial constants, because the

entanglement entropies of a product state always vanish
for any choices of the permutation ⌧ and the Rényi in-
dex n. Then from Eq. (52), we can find the solution of

�(n)
 (0)[�],

�(n)
 (0)[�] =

Y

i

X

⌧i2Sn

Wg⌧�1
i �i

=
�(d)N

�(d+ n)N
, (53)

where the Weingarten function Wg here is of the bound
dimension d. Substitute the result back to Eq. (51), we
obtain the relation between the entanglement features of
| (t)i and of U(t),

V (n)
 (t)[⌧ ] =

�(d)N

�(d+ n)N

X

[�]

W (n)
U(t)[�

�1, ⌧ ]. (54)

t t

P Hosur, XL Qi, DA Roberts, B Yoshida, 1511.04021

c.f. S Vijay, A 
Vishwanath, 
1803.08483

c.f. YD Lensky, XL Qi, 1805.03675
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Therefore, the knowledge of the entanglement features of
the unitary evolution itself is su�cient to determine how
the entanglement will grow after a quantum quench from
a product state, as we proposed in Eq. (8). A similar
relation is also proposed in Ref. 88 recently.

In the following, we will focus on the ensemble averaged
2nd-Rényi entanglement features of the state,

V (2)[⌧ ] = hV (n)
 (t)[⌧ ]iU(t)2E(t). (55)

Applying Eq. (54) to Eq. (23), we can obtain the entan-
glement features of | (t)i to the leading order of D = dN ,

V (2)[⌧ ] = Vearly[⌧ ] + Vlate[⌧ ],

Vearly[⌧ ] = R[111̄1̄] + · · · ,

Vlate[⌧ ] =
X

�=±1

D
�⌧�1

2 (R[00] �R[111̄1̄]) + · · · ,
(56)

where � is an auxiliary Ising variable in the holographic
bulk. As time evolves, V (2)[⌧ ] crosses over from the early-
time behavior Vearly to the late-time behavior Vlate. In
the late time, the entanglement feature can be modeled
by an Ising Hamiltonian Hlate,

Hlate[⌧ ; �] = � ln d

2

X

i

�⌧i, (57)

such that Vlate[⌧ ] =
P

[�] e
�Hlate[⌧ ;�]D�1/2(R[00] �

R[111̄1̄]). The holographic Ising model describes an holo-
graphic bulk variable � couples to all qudit variables
⌧i. In terms of the random tensor network, this im-
plies that the late-time state | (t)i can be described by a
big random tensor, which is consistent with the random
matrix theory. From the perspective of tensor network
holography89–91 , � can be view as a black hole horizon
in the sense that the Ryu-Takanayagi surface92 can never
cut through the interior of the random tensor that cor-
responds to �. Such a black hole picture naturally gives
rise to the volume law entanglement entropy in the late
time.

We can translate the entanglement feature to the en-
tanglement entropy according to Eq. (50). Given the re-
sult in Eq. (56), the 2nd Rényi entropy over a subset A of
NA qudits of a quantum many-body state after a quench
from the product state follows (to the leading D order)

S(2)(A) = � ln(R[111̄1̄] + (1�R[111̄1̄])(d
�NA + d�NĀ)),

(58)
where NĀ = N � NA. For a N = 20 qudit system, we
plot the entanglement entropy S(2)(A) as a function of
both time t and the subset size NA in Fig. 7. The entropy
grows quadratically in time as

S(2)(A) = 2(1� d�NA � d�NĀ)t2 +O(t4), (59)

as shown in Fig. 7(a). In contrast to the linear growth
of entropy for chaotic local Hamiltonian dynamics, the
quadratic growth is a consequence of the non-locality of
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FIG. 7: A system of N = 20 qudits. (a) The entanglement
entropy grow after a quench from the product state for dif-
ferent size of the subset A, ranging from NA = 0 (blue) to
NA = 10 (red). (b) The scaling of entanglement entropy with
NA at di↵erent time, ranging from t = 0 (blue) to t = 2 (red).

the random Hamiltonian we considered. In the late time,
the entropy approaches to the “volume law” scaling,

S(2)(A) ' NA ln d (NA ⌧ N/2), (60)

as shown in Fig. 7(b).

VI. SUMMARY

In this work, we introduce the general concept of en-
tanglement features that can be defined both for uni-

tary gates U as W (n)
U [�, ⌧ ] and for many-body states | i

as V (n)
 [⌧ ], which provide a systematic characterization

of their entanglement properties. In the simplest case
(when �, ⌧ are cyclic), the entanglement features are just

exponentiated entanglement entropies ⇠ e(1�n)S(n)

. If we
consider the entanglement entropy as a kind of “free en-
ergy” associated with the entanglement region, then the
entanglement features are just the corresponding Boltz-
mann weights. From this perspective, the entanglement
features describe a statistical ensemble of entanglement
regions which encodes the “features of entanglement” in
either a unitary gate or a many-body state. For more
general permutations �, ⌧ 2 S⇥N

n , the entanglement fea-
tures give a more refined description of quantum entan-
glement that can go beyond the description power of en-
tanglement entropies.
The entanglement feature is useful in relating many

di↵erent ideas together. Many quantum information the-
oretic descriptions of entanglement, such as mutual and
multi-partite information, are unified within the frame-
work of entanglement features. Moreover, several mea-
sures of quantum chaos including the out-of-time-order
correlation and the entropy growth after quantum quench
are all related to the entanglement features of the unitary
evolution itself.
At the first glance, specifying the entanglement fea-

ture for every configuration of � and ⌧ seems to involve
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Therefore, the knowledge of the entanglement features of
the unitary evolution itself is su�cient to determine how
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a product state, as we proposed in Eq. (8). A similar
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2nd-Rényi entanglement features of the state,

V (2)[⌧ ] = hV (n)
 (t)[⌧ ]iU(t)2E(t). (55)

Applying Eq. (54) to Eq. (23), we can obtain the entan-
glement features of | (t)i to the leading order of D = dN ,

V (2)[⌧ ] = Vearly[⌧ ] + Vlate[⌧ ],

Vearly[⌧ ] = R[111̄1̄] + · · · ,

Vlate[⌧ ] =
X

�=±1

D
�⌧�1

2 (R[00] �R[111̄1̄]) + · · · ,
(56)

where � is an auxiliary Ising variable in the holographic
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sult in Eq. (56), the 2nd Rényi entropy over a subset A of
NA qudits of a quantum many-body state after a quench
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FIG. 7: A system of N = 20 qudits. (a) The entanglement
entropy grow after a quench from the product state for dif-
ferent size of the subset A, ranging from NA = 0 (blue) to
NA = 10 (red). (b) The scaling of entanglement entropy with
NA at di↵erent time, ranging from t = 0 (blue) to t = 2 (red).

the random Hamiltonian we considered. In the late time,
the entropy approaches to the “volume law” scaling,

S(2)(A) ' NA ln d (NA ⌧ N/2), (60)

as shown in Fig. 7(b).
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In this work, we introduce the general concept of en-
tanglement features that can be defined both for uni-

tary gates U as W (n)
U [�, ⌧ ] and for many-body states | i

as V (n)
 [⌧ ], which provide a systematic characterization

of their entanglement properties. In the simplest case
(when �, ⌧ are cyclic), the entanglement features are just

exponentiated entanglement entropies ⇠ e(1�n)S(n)

. If we
consider the entanglement entropy as a kind of “free en-
ergy” associated with the entanglement region, then the
entanglement features are just the corresponding Boltz-
mann weights. From this perspective, the entanglement
features describe a statistical ensemble of entanglement
regions which encodes the “features of entanglement” in
either a unitary gate or a many-body state. For more
general permutations �, ⌧ 2 S⇥N

n , the entanglement fea-
tures give a more refined description of quantum entan-
glement that can go beyond the description power of en-
tanglement entropies.
The entanglement feature is useful in relating many

di↵erent ideas together. Many quantum information the-
oretic descriptions of entanglement, such as mutual and
multi-partite information, are unified within the frame-
work of entanglement features. Moreover, several mea-
sures of quantum chaos including the out-of-time-order
correlation and the entropy growth after quantum quench
are all related to the entanglement features of the unitary
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At the first glance, specifying the entanglement fea-
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Hayden-Preskill Problem
• Can Bob decode Alice’s qudits?  
 
 
 
 
 
 
 

• Yoshida-Kitaev protocol

• Teleportation fidelity
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B Yoshida, A Kitaev, 
1710.03363

• Alice throws qudits to black hole

•    was maximally entangled with

• Bob collects radiation     at time    

B

B0B

D t
P Hayden, J Preskill, 0708.4025

F = hA|A00i2 = e�I(2)(A,C)

� 1

1 + d2(NA�ND)

dND�dNA

�������! 1



Hayden-Preskill Problem
• Modeling back hole dynamics by

• Haar random unitary

• unitary generated by random Hamiltonian

• Teleportation fidelity in terms of entanglement features 
 
 
 
 
 
 

• Full scrambling takes a long time

• A sequence of time windows (Bob must seize the moment)

P Hayden, J Preskill; B Yoshida, A Kitaev

F = e�I(2)(A,C) =
dNBdND
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Random Floquet Dynamics
• Chan-Luca-Chalker Model  
 
 
 

• On-site scrambling, followed by inter-site coupling

•     : Haar random,      : Gaussian random

• Locality + quasi-energy conservation

• Entanglement Features of random Floquet dynamics

A Chan, AD Luca, JT Chalker, 1803.03841
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Summary
• Entanglement Features 
 

• Defined for states and unitary operators 
They are related by

• Map to Ising model (or more general models) 
 

• Make connections to tensor 
networks and holography

• Apply to random unitary /  
Hamiltonian dynamics …

W (n)[�] = exp
�
� (n� 1)S(n)[�]

�

|W (t)i = ŴU(t)Ŵ
�1
U(t0)|W (t0)i

Thanks for your attention!

S(2)
 [⌧ ] = S0 �

X
Jij⌧i⌧j �

X
Jijkl⌧i⌧j⌧k⌧l + · · ·
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terms together is like a statistical superposition of dif-
ferent Ising models defined on di↵erent background ge-
ometries (graph connectivities) with weights that are not
necessarily positive. The superposition of Ising models
can be considered as a kind of gravitational fluctuation,
as the lattice structure (graph connectivity) of the Ising
model is changing from model to model. On each fixed
background, the Ising variables have no (connected) cor-
relation beyond two-body. But once the gravitational
fluctuations are introduced, complicated many-body cor-
relations will be generated among all Ising variables.

If we introduce some auxiliary degrees of freedom in
the holographic bulk, we can separate the entanglement
features in Eq. (23) into two terms,

W (2)[�, ⌧ ] = Wearly[�, ⌧ ] +Wlate[�, ⌧ ], (25)

where Wearly governs the early-time behavior and Wlate

governs the late-time behavior (as to be justified soon)

Wearly[�, ⌧ ] =
X

�=±1

D
1
2 (��⌧+�)Fearly(�),

Wlate[�, ⌧ ] =
X

�1,2=±1

D
1
2 (�1�+�2⌧+�1�2)Flate(�1�2).

(26)

Auxiliary Ising variables � (or �1,2) are introduced as the
bulk degrees of freedom, whose fluctuations are governed
by the partition weight Fearly(�) (or Flate(�1�2)), which
can be directly read o↵ from Eq. (23),

Fearly(�) =

(
R[111̄1̄]D � = +1,

�2(R[111̄1̄] �R[21̄1̄])D � = �1;

Flate(�) =

8
><

>:

(R[00] �R[111̄1̄])D
1
2 � = +1,

�(2R[00] �R[0] + 2R[21̄1̄]

�3R[111̄1̄])D
1
2 � = �1.

(27)

If we trace out the boundary freedoms � and ⌧ , we can
obtain the e↵ective theory for the bulk freedom �, from
which we can evaluate the expectation value of the weight
functions F̄early,late = hFearly,late(�)i�. They characterize
the relative importance between the two models Wearly

and Wlate. We plot F̄early,late(t) as a function of time t in
Fig. 2(a). There is a crossover between F̄early and F̄late

around an order-one time scale tc ⇡ 0.58 (in unit of the
inverse of the energy scale of the GUE Hamiltonian). So
the early (late) time entanglement features are indeed
dominated by Wearly (Wlate).

In the early time, the entanglement features are dom-
inated by Wearly = Tr� e�HearlyFearly, which can be de-
scribed by an Ising Hamiltonian with a bulk variable �,

Hearly[�, ⌧ ; �] = � ln d

2

X

i

��i⌧i �
lnD

2
�. (28)

The last term is a strong Zeeman field that pins the bulk
variable to � = +1. Then the first term simply describes
a direct coupling between input and output along each
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FIG. 2: (a) The weight functions F̄early and F̄late v.s. time t,
showing the crossover from the early-time model Wearly to the
late-time model Wlate. Holographic Ising models in (b) the
early time Wearly and (c) the late time Wlate. Each dot is an
Ising variable and each bond corresponds to a ferromagnetic
Ising coupling. The light triangles in (b) denotes the three-
body interaction between boundary and bulk.

quantum channels separately, as illustrated in Fig. 2(b).
This is indeed the entanglement feature expected for the
unitary gate close to the identity. In most cases, the
feedback e↵ect from the first term will not be able to
overturn the strong Zeeman pinning of the second term,
unless the input and output variables are anti-polarized,
i.e., �⌧ ' �1, which corresponds to choosing the en-
tanglement region to be either the input or the output
channels only. In this case, the bulk fluctuates strongly
and the entanglement features are dominated by 1/D ef-
fects. Apart from this strong fluctuation limit, the bulk
will be well behaved and the corresponding holographic
geometry is a fragmented space (i.e. each quantum chan-
nels are far separated from each other in the holographic
space because there is almost no entanglement among
them).
In the late time, the entanglement features are dom-

inated by Wlate = Tr[�] e
�HlateFlate, which can be de-

scribed by an Ising Hamiltonian with two bulk variables
� = [�1, �2],

Hlate[�, ⌧ ; �] = � ln d

2

X

i

(�1�i + �2⌧i)�
lnD

2
�1�2. (29)

The late-time model only contains two-body interactions
as illustrated in Fig. 2(c). All the input (output) vari-
ables couples to �1 (�2) with coupling strength ln d/2.
The bulk variables �1 and �2 themselves couples strongly
with the strength lnD/2 (which is N times stronger
than ln d/2). As shown in Ref. 27, the holographic Ising
model implies to a random tensor network description (of
the unitary gate) with the same network geometry. In
the tensor network description, all quantum information
from the input side enters the tensor �1 gets scrambled.
The scrambled information are then emitted from the
tensor �2 to the output side. This implies that �1 and �2
can be considered as a pair of temporally entangled black
hole and white hole in the holographic bulk, matching


