Entanglement Features of Random Hamiltonian Dynamics
 Yi-Zhuang You
 (UC San Diego)

Novel Approaches to Quantum Dynamics KITP, Aug. 2018

Outline

- Motivation and definition of Entanglement Features.
- Entanglement features of States
- Relation to Random Tensor Networks (RTN)

> YZ You, Z Yang, XL Qi, 1709.01223
> R Vasseur, AC Potter, YZ You, AWW Ludwig, 1807.07082

- Entanglement features of Unitaries
- Random Hamiltonian generated unitaries

YZ You, Y Gu, 1803.10425

- Floquet dynamics

WT Kuo, D. Arovas, YZ You (in progress)

Motivation

- Goal: to describe the structure and dynamics of quantum many-body entanglement.
- Entanglement Entropy - a tool to quantify entanglement
- Quantum many-body system in a pure state $|\Psi\rangle$
- Reduced density matrix of subsystem A

$$
\rho_{A}=\operatorname{Tr}_{\bar{A}}|\Psi\rangle\langle\Psi|
$$

- Entanglement (Renyi) Entropy

$$
S_{\Psi}^{(n)}(A)=\frac{1}{1-n} \ln \operatorname{Tr}_{A} \rho_{A}^{n}
$$

measures the degree of entanglement between A and \bar{A}

- Renyi index n. Limit of $n \rightarrow 1$, von Neumann entropy

$$
S_{\Psi}^{(1)}(A)=-\operatorname{Tr}_{A} \rho_{A} \ln \rho_{A}
$$

- Entanglement region A (can be disconnected in general)

Motivation

- Entanglement entropy is useful to construct many quantum information measures
- Different Renyi indices \rightarrow entanglement spectrum
- Different entanglement regions \rightarrow mutual information ...

$$
I_{\Psi}^{(n)}(A, B)=S_{\Psi}^{(n)}(A)+S_{\Psi}^{(n)}(B)-S_{\Psi}^{(n)}(A \cup B)
$$

- They are useful in describing structures and dynamics of quantum many-body entanglement
- Ryu-Takayanagi formula and holographic duality
- Design tensor / neural network structures
- Analyze quantum dynamics (many-body localization, thermalization, driven systems)
- ...

Permutation Group Formulation

- Partial trace can be evaluated using permutations

- A system of N qudits (d-dim local Hilbert space)
- Renyi index n sets the degree of the permutation
- Entanglement region specified by group element acting on each qudit channel

$$
\sigma_{i}= \begin{cases}\text { HH } & i \in A, \\ \|I\| \| & i \in \bar{A} .\end{cases}
$$

$$
\sigma=\sigma_{1} \times \sigma_{2} \times \cdots \times \sigma_{N} \in S_{n}^{\times N} \text { represented as } X_{\sigma}
$$

Entanglement Features

- Entanglement Features (EF) of a pure state $|\Psi\rangle$

$$
W_{\Psi}^{(n)}[\sigma]=\operatorname{Tr}(|\Psi\rangle\langle\Psi|)^{\otimes n} X_{\sigma}
$$

- or equivalently as exponentiate entanglement entropy

$$
W_{\Psi}^{(n)}[\sigma]=\exp \left(-(n-1) S_{\Psi}^{(n)}[\sigma]\right)
$$

- mapping to statistical mechanics problems entanglement region \longleftrightarrow permutation configuration entanglement entropy \longleftrightarrow energy entanglement feature \longleftrightarrow Boltzmann weight
- All entanglement features: exponentiated entanglement entropies of over all entanglement regions and to all Renyi indices.

Entanglement Features

- Is entanglement feature just a rewriting of entanglement entropy?
- Basically yes.
- But organized as partition functions (leads to new insights)
- And becomes useful when we discuss quantum information dynamics
- Quantum dynamics: described by unitary evolution U

- Entanglement Features (EF) of a unitary evolution U

$$
W_{U}^{(n)}[\sigma, \tau]=\operatorname{Tr} U^{\otimes n} X_{\sigma}\left(U^{\otimes n}\right)^{\dagger} X_{\tau}
$$

where $\sigma, \tau \in S_{n}^{\times N}$ act on the past and future respectively

Entanglement Features

- Any relation between state EF and unitary EF?

$$
\text { state: } \quad W_{\Psi}^{(n)}[\sigma]=\operatorname{Tr}(|\Psi\rangle\langle\Psi|)^{\otimes n} X_{\sigma}
$$

unitary: $W_{U}^{(n)}[\sigma, \tau]=\operatorname{Tr} U^{\otimes n} X_{\sigma}\left(U^{\otimes n}\right)^{\dagger} X_{\tau}$

- Growth of entanglement entropy from product state
- Evolution of state $|\Psi(t)\rangle=U(t)|\Psi(0)\rangle$

$$
W_{\Psi(t)}^{(n)}[\tau]=\frac{\Gamma(d)^{N}}{\Gamma(d+n)^{N}} \sum_{[\sigma]} W_{U(t)}^{(n)}[\sigma, \tau]
$$

YZ You, Y Gu, 1803.10425; YD Lensky, XL Qi, 1805.03675

- More generally, how does the unitary evolution of state induces (non-unitary) evolution of entanglement features?

$$
\mathrm{i} \partial_{t}|\Psi\rangle=H|\Psi\rangle \quad \Rightarrow \quad-\partial_{t} W_{\Psi}^{(n)} \stackrel{?}{=} \hat{D} W_{\Psi}^{(n)}
$$

Random Tensor Network

- Focus on the 2nd Renyi entanglement features ($n=2$)
- $\tau \in S_{2}^{\times N}$: Ising variables (identity $=1$, swap $=-1$)

$$
\begin{aligned}
& W_{\Psi}^{(2)}[\tau]=e^{-S_{\Psi}^{(2)}[\tau]} \\
& S_{\Psi}^{(2)}[\tau]=S_{0}-\sum J_{i j} \tau_{i} \tau_{j}-\sum J_{i j k l} \tau_{i} \tau_{j} \tau_{k} \tau_{l}+\cdots
\end{aligned}
$$

- What is the structure of this Ising model?
- Random Tensor Network (RTN) provides a microscopic construction

Hayden, Nezami, Qi, Thomas, Walter, Yang 2016

- Random Tensor Network (RTN)

- On each vertex: rand. tensor
- On each link: bond dim. $d_{i j}$
- RTN: an ensemble of quantum many-body states

Random Tensor Network

- Entanglement Features of RTN

$$
W_{\mathrm{RTN}}^{(2)}[\tau]=e^{-S_{\mathrm{RTN}}^{(2)}[\tau]}=\operatorname{Tr}(|\operatorname{RTN}\rangle\langle\operatorname{RTN}|)^{\otimes 2} X_{\tau}
$$

- Ensemble average over random tensors

$$
\begin{aligned}
& \mathbb{E} W_{\mathrm{RTN}}^{(2)}[\tau]=\sum_{[\sigma]} e^{-E[\sigma, \tau]} \\
& E[\sigma, \tau]=-\sum_{\langle i j\rangle} J_{i j} \sigma_{i} \sigma_{j}-\sum_{i \in \partial} h \tau_{i} \sigma_{i} \quad\left(J_{i j}=\frac{1}{2} \ln d_{i j}\right)
\end{aligned}
$$

- Boundary spins \rightarrow entanglement region $\tau_{i}=\left\{\begin{array}{cc}-1 & i \in A, \\ +1 & i \in \bar{A} .\end{array}\right.$
- Entanglement ~ spin correlation
- Entanglement entropy ~ free energy (tracing out bulk σ)

$$
S_{\mathrm{RTN}}^{(2)}[\tau]=S_{0}-\sum J_{i j} \tau_{i} \tau_{j}-\sum J_{i j k l} \tau_{i} \tau_{j} \tau_{k} \tau_{l}+\cdots
$$

Holographic Duality

- Multi-spin interaction in the Ising model reflects the non-local structure of many-body entanglement

- Entanglement structure approximately resolved by tensor network (PEPS)
- as entanglement pairs (two-spin interaction)
- at the price of introducing bulk tensors (projections)
- bulk network geometry ~ emergent holographic geometry

Machine Learning Spacial Geometry

- Ryu-Takayanagi: entanglement = area

$$
S_{\Psi}(A)=\frac{1}{4 G_{N}}|\gamma(A)|
$$

- area of minimal surface in the bulk ~ domain wall energy in the Ising model
- ER = EPR = Ising coupling

- Deep Learning: introducing hidden (bulk) variables to resolve complicated correlation in visible (boundary) variables
- Ising model \rightarrow Deep Boltzmann Machine
- Input: entanglement features
- Train: network connectivity
- Result: holographic geometry

Entanglement Transition from Holographic RTN

- Entanglement Transitions: area-law to volume-law transition, e.g. many-body localization to thermalization transition
- Phase transition in holographic Ising model

Ferromagnet (ordered) domain wall energy $\sim L_{A}$
volume-law entanglement

- Transition driven by bond dimension of RTN

R Vasseur, AC Potter, YZ You, AWW Ludwig, 1807.07082

Paramagnet (disordered)

 domain wall energy ~ const.area-law entanglement

Dynamics of Entanglement Feature

- We can "Quantize" the entanglement features
- State EF \rightarrow vector: $\left|W_{\Psi}\right\rangle=\sum_{[\sigma]} W_{\Psi}^{(2)}[\sigma]|[\sigma]\rangle$
- Unitary EF \rightarrow matrix: $\hat{W}_{U}=\sum_{[\sigma, \tau]} W_{U}^{(2)}[\sigma, \tau]|[\tau]\rangle\langle[\sigma]|$
- Unitary evolution of a state

$$
|\Psi(t)\rangle=U(t)|\Psi(0)\rangle
$$

will induce a (generally) non-unitary evolution of its entanglement features

$$
\left|W_{\Psi(t)}\right\rangle=\hat{W}_{U(t)} \hat{W}_{U\left(t^{\prime}\right)}^{-1}\left|W_{\Psi\left(t^{\prime}\right)}\right\rangle
$$

YZ You, Y Gu, 1803.10425 $\left|W_{\Psi(t)}\right\rangle$

- As long as we know how to compute \hat{W}_{U}, we know everything about the full entanglement dynamics.
- In general a hard problem, but for random unitary circuit, the answer is known.

Random Unitary Circuit

- Independent Haar random unitary gates (with locality)

A Nahum, J Ruhman, S Vijay, J Haah 1608.06950; C Keyserlingk, T Rakovszky, F Pollmann, S Sondhi 1705.08910 ...
$\left|W_{\Psi(t+1)}\right\rangle=\hat{F}\left|W_{\Psi(t)}\right\rangle \quad$ (Floquet-like)

- In each Floquet cycle: two steps

$$
\hat{F}=\prod_{\langle i j\rangle} \hat{Q}_{i j} \hat{P}_{i j}
$$

- Projection (proj. out domain walls)

$$
\hat{P}_{i j}=\frac{1}{2}\left(1+Z_{i} Z_{j}\right)
$$

- followed by Quantum fluctuations

$$
\hat{Q}_{i j}=1+\frac{d}{d^{2}+1}\left(X_{i}+X_{j}\right)
$$

- $-\nabla_{t}\left|W_{\Psi}\right\rangle=\hat{H}_{F}\left|W_{\Psi}\right\rangle$ enhance ferromagnetic correlations
- Thermalization: para $=$ area-law \rightarrow ferro $=$ volume-law
- Mode decay $\left\langle[\sigma] \mid W_{\Psi}\right\rangle=e^{-S_{\Psi}[\sigma]} \sim e^{-t / \tau} \quad$ (linear S growth)

Random Hamiltonian Dynamics

- Random Hamiltonian dynamics: unitary evolution generated by random Hamiltonian

$$
U(t)=e^{-\mathrm{i} H t}
$$

- A quantum many-body system of N qudits
- each qudit: d dimensional Hilbert space

- Total Hilbert space dimension $D=d^{N}$
- Radom Hamiltonian H
- a $D \times D$ Hermitian matrix acting on all qudits
- randomly drawn from Gaussian unitary ensemble

$$
P(H) \propto e^{-\frac{D}{2} \operatorname{Tr} H^{2}} \quad \text { (fixed spectral radius) }
$$

- Hamiltonian is non-local (i.e. not a sum of local / few-body operators), modeling a strongly thermalizing / chaotic system.

Random Hamiltonian Dynamics

- Random Hamiltonian v.s. Random Unitary
- Random Unitary: locality, energy not conserved
- Random Hamiltonian: energy conserved, non-local
- Tensor product structure of the Hilbert space still allows us to specify entanglement regions and define entanglement features
- Goal: Entanglement Features of $U(t)=e^{-\mathrm{i} H t}$

$$
W_{U}^{(2)}[\sigma, \tau]=\operatorname{Tr} U^{\otimes 2} X_{\sigma}\left(U^{\otimes 2}\right)^{\dagger} X_{\tau}
$$

- averaged over ensemble $\mathcal{E}(t)=\left\{U(t)=e^{-\mathrm{i} H t} \mid H \in \mathrm{GUE}\right\}$

$$
W^{(2)}[\sigma, \tau]=\left\langle W_{U}^{(2)}[\sigma, \tau]\right\rangle_{U \in \mathcal{E}(t)}
$$

- focused on Renyi index = 2 case .

Result of Entanglement Features

$W^{(2)}[\sigma, \tau]=$

$$
\begin{aligned}
& W^{(2)}[\sigma, \tau]=W_{\text {early }}[\sigma, \tau]+W_{\text {late }}[\sigma, \tau], \\
& W_{\text {early }}[\sigma, \tau]=\sum_{v= \pm 1} D^{\frac{1}{2}(v \bar{\sigma} \tau+v)} F_{\text {early }}(v), \quad F_{\text {early }}(v)=\frac{f_{\text {early }}(v)}{Z_{4}(D)} \\
& W_{\text {late }}[\sigma, \tau]=\sum_{v_{1,2}= \pm 1} D^{\frac{1}{2}\left(v_{1} \bar{\sigma}+v_{2} \bar{\tau}+v_{1} v_{2}\right)} F_{\text {late }}\left(v_{1} v_{2}\right) . \quad F_{\text {late }}(v)=\frac{f_{\text {late }}(v)}{Z_{4}(D)}
\end{aligned}
$$

$$
f_{\text {early }}(+1)=D^{3}\left(4\left(D^{2}+6\right)\left(\mathcal{R}_{[00]}-\mathcal{R}_{[0]}\right)+16\left(2 D^{2}-3\right) \mathcal{R}_{[1 \overline{1}]}+\left(D^{2}-3\right)\left(D^{2}-4\right) \mathcal{R}_{[2 \overline{2}]}-4 D^{2}\left(D^{2}+1\right) \mathcal{R}_{[1 \overline{0} 0]}\right.
$$

$$
\left.-4 D^{2}\left(D^{2}-4\right) \mathcal{R}_{[2 \overline{1} \overline{1}]}+D^{2}\left(D^{2}-3\right)\left(D^{2}-4\right) \mathcal{R}_{[11 \overline{1} \overline{1}]}\right),
$$

$$
f_{\text {early }}(-1)=2 D^{5}\left(10\left(\mathcal{R}_{[0]}-\mathcal{R}_{[00]}\right)-4\left(D^{2}+1\right) \mathcal{R}_{[1 \overline{1}]}-\left(D^{2}-4\right) \mathcal{R}_{[2 \overline{2}]}\right.
$$

$$
\left.+4\left(2 D^{2}-3\right) \mathcal{R}_{[1 \overline{1} 0]}+\left(D^{2}-3\right)\left(D^{2}-4\right) \mathcal{R}_{[2 \overline{1} \overline{1}]}-D^{2}\left(D^{2}-4\right) \mathcal{R}_{[11 \overline{1} 1]}\right),
$$

$$
f_{\text {late }}(+1)=D^{9 / 2}\left(-2\left(D^{2}-14\right) \mathcal{R}_{[0]}+\left(D^{4}-11 D^{2}+8\right) \mathcal{R}_{[00]}-40 \mathcal{R}_{[1 \overline{1}]}-\left(D^{2}-4\right) \mathcal{R}_{[2 \overline{2}]}+4\left(D^{2}+6\right) \mathcal{R}_{[1 \overline{1} 0]}\right.
$$

$$
\left.+6\left(D^{2}-4\right) \mathcal{R}_{[2 \overline{1} \overline{1}]}-D^{2}\left(D^{2}-4\right) \mathcal{R}_{[11 \overline{1} 1]}\right),
$$

$$
f_{\text {late }}(-1)=D^{9 / 2}\left(\left(D^{2}+1\right)\left(D^{2}-12\right) \mathcal{R}_{[0]}-2\left(D^{4}-12 D^{2}+12\right) \mathcal{R}_{[00]}+8\left(D^{2}+6\right) \mathcal{R}_{[1 \overline{1}]}+3\left(D^{2}-4\right) \mathcal{R}_{[2 \overline{2}]}\right.
$$

$$
\left.-20 D^{2} \mathcal{R}_{[1 \overline{1} 0]}-2 D^{2}\left(D^{2}-4\right) \mathcal{R}_{[2 \overline{1} \overline{1}]}+3 D^{2}\left(D^{2}-4\right) \mathcal{R}_{[11 \overline{1} \overline{1}]}\right) .
$$

$$
\mathcal{R}_{[0]}(t)=\mathcal{R}_{[00]}(t)=1,
$$

$$
\mathcal{R}_{[1 \overline{1}]}(t)=\mathcal{R}_{[1 \overline{1} 0]}(t)=r_{1}(t)^{2}+\left(1-r_{2}(t)\right) / D,
$$

$$
\mathcal{R}_{[2 \overline{2}]}(t)=\mathcal{R}_{[1 \overline{1}]}(2 t),
$$

$$
\mathcal{R}_{[211]}(t)=r_{1}(2 t) r_{1}(t)^{2}+\left(-r_{1}(2 t) r_{2}(t) r_{3}(2 t)-2 r_{1}(t) r_{2}(2 t) r_{3}(t)++r_{1}(2 t)^{2}+2 r_{1}(t)^{2}\right) / D
$$

$$
+\left(2 r_{2}(3 t)-r_{2}(2 t)-2 r_{2}(t)+1\right) / D^{2}
$$

$$
\mathcal{R}_{[11 \overline{1} \overline{1}]}(t)=r_{1}(t)^{4}+\left(-2 r_{1}(t)^{2} r_{2}(t) r_{3}(2 t)-4 r_{1}()^{2} r_{2}(t)+2 r_{1}(2 t) r_{1}(t)^{2}+4 r_{1}(t)^{2}\right) / D
$$

$$
+\left(2 r_{2}(t)^{2}+r_{2}(t)^{2} r_{3}(2 t)^{2}+8 r_{1}(t) r_{2}(t) r_{3}(t)-2 r_{1}(2 t) r_{2}(t) r_{3}(2 t)-4 r_{1}(t) r_{2}(2 t) r_{3}(t)\right.
$$

$$
\left.+r_{1}(2 t)^{2}-4 r_{1}(t)^{2}-4 r_{2}(t)+2\right) / D^{2}
$$

$$
+\left(-7 r_{2}(2 t)+4 r_{2}(3 t)+4 r_{2}(t)-1\right) / D^{3}
$$

$$
r_{1}(t)=\frac{J_{1}(2 t)}{t}, \quad r_{2}(t)=\left(1-\frac{|t|}{2 D}\right) \Theta\left(1-\frac{|t|}{2 D}\right), \quad r_{3}(t)=\frac{\sin (\pi t / 2)}{\pi t / 2}
$$

Result of Entanglement Features

- To the leading order in $D=d^{N}$

$$
\begin{aligned}
W^{(2)} & {[\sigma, \tau]=\mathcal{R}_{[11 \overline{1} \overline{1}]} D^{\frac{3+\bar{\sigma} \tau}{2}} } \\
- & 2\left(\mathcal{R}_{[11 \overline{1} 1]}-\mathcal{R}_{[2 \overline{1} \overline{1}]}\right) D^{\frac{1-\bar{\sigma} \bar{\tau}}{2}} \\
+ & \left(\mathcal{R}_{[00]}-\mathcal{R}_{[11 \overline{1} \overline{1}]}\right)\left(D^{\frac{2+\bar{\sigma}+\bar{\tau}}{2}}+D^{\frac{2-\bar{\sigma}-\bar{\tau}}{2}}\right) \\
- & \left(2 \mathcal{R}_{[00]}-\mathcal{R}_{[0]}+2 \mathcal{R}_{[2 \overline{1} \overline{1}]}-3 \mathcal{R}_{[11 \overline{1} \overline{1}]}\right) \\
& \times\left(D^{\frac{\sigma-\bar{T}}{2}}+D^{\frac{-\bar{\sigma}+\bar{\tau}}{2}}\right)+\cdots,
\end{aligned}
$$

- Time dependence

$$
\mathcal{R}_{[k]}(t)=\frac{1}{D^{l}}\left\langle\prod_{a} \operatorname{Tr} U(t)^{k_{a}}\right\rangle
$$

Spectral form factor of GUE
J Cotler, N Hunter-Jones, J Liu,
B Yoshida, 1706.05400

- Region dependence

$$
\begin{aligned}
& \bar{\sigma}=N^{-1} \sum_{i} \sigma_{i} \text { (input) } \\
& \bar{\tau}=N^{-1} \sum_{i} \tau_{i} \text { (output) } \\
& \overline{\sigma \tau}=N^{-1} \sum_{i} \sigma_{i} \tau_{i} \\
& \text { (coupling) }
\end{aligned}
$$

Holographic Ising Model

- Given $W^{(2)}[\sigma, \tau]$ as a Boltzmann weight, what kind of Ising model does it describe?
- Introduce hidden (bulk) variables to simplify the result

$$
\begin{aligned}
& W^{(2)}[\sigma, \tau]=W_{\text {early }}[\sigma, \tau]+W_{\text {late }}[\sigma, \tau] \\
& W_{\text {early }}[\sigma, \tau]=\sum_{v= \pm 1} D^{\frac{1}{2}(v \overline{\sigma \tau}+v)} F_{\text {early }}(v) \\
& W_{\text {late }}[\sigma, \tau]=\sum_{v_{1,2}= \pm 1} D^{\frac{1}{2}\left(v_{1} \bar{\sigma}+v_{2} \bar{\tau}+v_{1} v_{2}\right)} F_{\text {late }}\left(v_{1} v_{2}\right)
\end{aligned}
$$

Holographic Ising Model

- Early-time Ising model $E_{\text {early }}[\sigma, \tau ; v]=-\frac{\ln d}{2} \sum_{i} v \sigma_{i} \tau_{i}-\frac{\ln D}{2} v$
- Strong pinning field $\rightarrow v=+1$

- Direct coupling (max entanglement) between past \& future
- Spacial geometry is fragmented (independent channels)
- Late-time Ising model
$E_{\text {late }}[\sigma, \tau ; v]=-\frac{\ln d}{2} \sum_{i}\left(v_{1} \sigma_{i}+v_{2} \tau_{i}\right)-\frac{\ln D}{2} v_{1} v_{2}$
- RTN: information falls into tensor v_{1},
gets scrambled, emits from tensor v_{2} gets scrambled, emits from tensor v_{2}
- A pair of temporally entangled black / white holes
- Random Hamiltonian dynamics \rightarrow black hole formation

Thermalization and Quantum Chaos

- Two approaches to describe Thermalization
- Equilibrium (static) approach: eigenstate thermalization hypothesis, level statistics, volume-law entanglement ...
- Dynamical approach: quantum chaos, information scrambling, OTOC (butterfly effect), entropy growth ...
- Random Hamiltonian: (over)simplified model of ETH
- Many measures of quantum chaos (OTOC, entropy growth) can be formulated as entanglement features of unitary.
- Goal: learn about typical quantum chaotic behavior of manybody systems that exhibit eigenstate thermalization.
- Tool: Entanglement features of random Hamiltonian dynamics

$$
W^{(2)}[\sigma, \tau]=\left\langle W_{U}^{(2)}[\sigma, \tau]\right\rangle_{U \in \mathcal{E}(t)}
$$

Thermalization and Quantum Chaos

- Operator-averaged OTOC P Hosur, XL Qi, DA Roberts, B Yoshida, 1511.04021 $\operatorname{OTOC}(A, B)=\underset{O_{A}, O_{B}}{\operatorname{avg}} \frac{1}{D_{0}} \operatorname{Tr} O_{A}(t) O_{B} O_{A}(t) O_{B}=W_{U(t)}^{(2)}(A, \bar{B})$

- Entropy growth from product state
$W_{\Psi(t)}^{(2)}[\tau] \propto \sum_{[\sigma]} W_{U(t)}^{(2)}[\sigma, \tau]$
c.f. YD Lensky, XL Qi, 1805.03675 (not a linear growth in time, due to non-local Hamiltonian)

Hayden-Preskill Problem

- Can Bob decode Alice's qudits?

- Yoshida-Kitaev protocol
- Teleportation fidelity

$$
\begin{aligned}
F & =\left\langle A \mid A^{\prime \prime}\right\rangle^{2}=e^{-I^{(2)}(A, C)} \\
& \geq \frac{1}{1+d^{2\left(N_{A}-N_{D}\right)}} \xrightarrow{d^{N_{D} \gg d^{N_{A}}}} 1
\end{aligned}
$$

- Alice throws qudits to black hole B
- B was maximally entangled with B^{\prime}
- Bob collects radiation D at time t

P Hayden, J Preskill, 0708.4025

Hayden-Preskill Problem

- Modeling back hole dynamics by
- Haar random unitary P Hayden, J Preskill; B Yoshida, A Kitaev
- unitary generated by random Hamiltonian $\underset{z}{ }$
- Teleportation fidelity in terms of entanglement features

$$
F=e^{-I^{(2)}(A, C)}=\frac{d^{N_{B}} d^{N_{D}}}{W^{(2)}(A, C)}
$$

- Full scrambling takes a long time $t_{\mathrm{s}}=\left(d^{N_{A}} / \pi\right)^{1 / 3}$
- A sequence of time windows (Bob must seize the moment)

Random Floquet Dynamics

- Chan-Luca-Chalker Model A Chan, AD Luca, JT Chalker, 1803.03841
- On-site scrambling, followed by inter-site coupling
- U_{i} : Haar random, $J_{i j}$: Gaussian random $\left\langle J_{i j}^{2}\right\rangle \equiv J^{2}$
- Locality + quasi-energy conservation
- Entanglement Features of random Floquet dynamics

$$
\begin{aligned}
& W_{U_{F}^{t}}^{(2)}[\sigma, \tau]=\operatorname{Tr}\left(U_{F}^{t}\right)^{\otimes 2} X_{\sigma}\left(U_{F}^{-t}\right)^{\otimes 2} X_{\tau}=e^{-E[\sigma, \tau]} \\
& \begin{array}{l}
E[\sigma, \tau]=-\frac{\ln d}{2} \sum_{i}\left(\sigma_{i} \tau_{i}+3\right) \\
\quad-\frac{J^{2} t}{4} \sum_{\langle i j\rangle}\left(\left(\sigma_{i}-\sigma_{j}\right)\left(\tau_{i}-\tau_{j}\right)\right. \\
\left.\quad+\left(1-\sigma_{i} \sigma_{j}\right)\left(1-\tau_{i} \tau_{j}\right)\right)
\end{array}
\end{aligned}
$$

Summary

- Entanglement Features

$$
W^{(n)}[\sigma]=\exp \left(-(n-1) S^{(n)}[\sigma]\right)
$$

- Defined for states and unitary operators

They are related by $\left|W_{\Psi(t)}\right\rangle=\hat{W}_{U(t)} \hat{W}_{U\left(t^{\prime}\right)}^{-1}\left|W_{\Psi\left(t^{\prime}\right)}\right\rangle$

- Map to Ising model (or more general models)

$$
S_{\Psi}^{(2)}[\tau]=S_{0}-\sum J_{i j} \tau_{i} \tau_{j}-\sum J_{i j k l} \tau_{i} \tau_{j} \tau_{k} \tau_{l}+\cdots
$$

- Make connections to tensor networks and holography
- Apply to random unitary / Hamiltonian dynamics ...

Thanks for your attention!

