Entanglement Features of Random Hamiltonian Dynamics

Yi-Zhuang You (UC San Diego)

Novel Approaches to Quantum Dynamics KITP, Aug. 2018

Outline

- Motivation and definition of Entanglement Features.
- Entanglement features of States
 - Relation to Random Tensor Networks (RTN)

YZ You, Z Yang, XL Qi, 1709.01223 R Vasseur, AC Potter, YZ You, AWW Ludwig, 1807.07082

- Entanglement features of Unitaries
 - Random Hamiltonian generated unitaries *

YZ You, Y Gu, 1803.10425

Floquet dynamics

WT Kuo, D. Arovas, YZ You (in progress)

Motivation

- Goal: to describe the structure and dynamics of quantum many-body entanglement.
- Entanglement Entropy a tool to quantify entanglement
 - ullet Quantum many-body system in a pure state $|\Psi
 angle$
 - Reduced density matrix of subsystem A

$$\rho_A = \text{Tr}_{\bar{A}} |\Psi\rangle\langle\Psi|$$

Entanglement (Renyi) Entropy

$$S_{\Psi}^{(n)}(A) = \frac{1}{1-n} \ln \operatorname{Tr}_{A} \rho_{A}^{n}$$

measures the degree of entanglement between ${\cal A}$ and ${\cal A}$

• Renyi index n. Limit of $n \to 1$, von Neumann entropy $S^{(1)}_{\Psi}(A) = -\mathrm{Tr}_A \rho_A \ln \rho_A$

ullet Entanglement region A (can be disconnected in general)

Motivation

- Entanglement entropy is useful to construct many quantum information measures
 - Different Renyi indices → entanglement spectrum
 - Different entanglement regions → mutual information ...

$$I_{\Psi}^{(n)}(A,B) = S_{\Psi}^{(n)}(A) + S_{\Psi}^{(n)}(B) - S_{\Psi}^{(n)}(A \cup B)$$

- They are useful in describing structures and dynamics of quantum many-body entanglement
 - Ryu-Takayanagi formula and holographic duality
 - Design tensor / neural network structures
 - Analyze quantum dynamics (many-body localization, thermalization, driven systems)

● ...

Permutation Group Formulation

Partial trace can be evaluated using permutations

- A system of N qudits (d-dim local Hilbert space)
- Renyi index n sets the degree of the permutation
- Entanglement region specified by group element acting on each qudit channel $i \in A$

$$\sigma_i = \begin{cases} \chi \chi \chi & i \in A, \\ |||| & i \in \bar{A}. \end{cases}$$

$$\sigma = \sigma_1 \times \sigma_2 \times \cdots \times \sigma_N \in S_n^{\times N}$$
 represented as X_{σ}

Entanglement Features

• Entanglement Features (EF) of a pure state $|\Psi\rangle$

$$W_{\Psi}^{(n)}[\sigma] = \operatorname{Tr}(|\Psi\rangle\langle\Psi|)^{\otimes n} X_{\sigma}$$

or equivalently as exponentiate entanglement entropy

$$W_{\Psi}^{(n)}[\sigma] = \exp(-(n-1)S_{\Psi}^{(n)}[\sigma])$$

- mapping to statistical mechanics problems
 - entanglement region \longleftrightarrow permutation configuration entanglement entropy \longleftrightarrow energy entanglement feature \longleftrightarrow Boltzmann weight
- All entanglement features: exponentiated entanglement entropies of over all entanglement regions and to all Renyi indices.

Entanglement Features

- Is entanglement feature just a rewriting of entanglement entropy?
 - Basically yes.
 - But organized as partition functions (leads to new insights)
 - And becomes useful when we discuss quantum information dynamics
- ullet Quantum dynamics: described by unitary evolution ${\cal U}$

output (future)
$$U(t) = \sigma \quad \text{(circuit)} \quad \text{(state)}$$
 input (past)

ullet Entanglement Features (EF) of a unitary evolution U

$$W_U^{(n)}[\sigma,\tau] = \operatorname{Tr} U^{\otimes n} X_{\sigma} (U^{\otimes n})^{\dagger} X_{\tau}$$

where $\sigma, \tau \in S_n^{\times N}$ act on the past and future respectively

Entanglement Features

Any relation between state EF and unitary EF?

state:
$$W_{\Psi}^{(n)}[\sigma] = \text{Tr}(|\Psi\rangle\langle\Psi|)^{\otimes n}X_{\sigma}$$

unitary:
$$W_U^{(n)}[\sigma,\tau] = \operatorname{Tr} U^{\otimes n} X_{\sigma} (U^{\otimes n})^{\dagger} X_{\tau}$$

- Growth of entanglement entropy from product state
 - Evolution of state $|\Psi(t)\rangle = U(t)|\Psi(0)\rangle$
 - Evolution of entanglement features

YZ You, Y Gu, 1803.10425; YD Lensky, XL Qi, 1805.03675

 More generally, how does the unitary evolution of state induces (non-unitary) evolution of entanglement features?

$$i\partial_t |\Psi\rangle = H|\Psi\rangle \quad \Rightarrow \quad -\partial_t W_{\Psi}^{(n)} \stackrel{?}{=} \hat{D}W_{\Psi}^{(n)}$$

c.f. C Jonay, D Huse, A Nahum 1803.00089; T Zhou, A Nahum 1804.09737

Random Tensor Network

- Focus on the 2nd Renyi entanglement features (n = 2)
 - $\tau \in S_2^{\times N}$: Ising variables (identity = 1, swap = -1)

$$W_{\Psi}^{(2)}[\tau] = e^{-S_{\Psi}^{(2)}[\tau]}$$

$$S_{\Psi}^{(2)}[\tau] = S_0 - \sum_{i,j} J_{ij} \tau_i \tau_j - \sum_{i,j} J_{ijkl} \tau_i \tau_j \tau_k \tau_l + \cdots$$

- What is the structure of this Ising model?
 - Random Tensor Network (RTN) provides a microscopic construction

 Hayden, Nezami, Qi, Thomas, Walter, Yang 2016
- Random Tensor Network (RTN)

- On each vertex: rand. tensor
- On each link: bond dim. d_{ij}
- RTN: an ensemble of quantum many-body states

Random Tensor Network

Entanglement Features of RTN

$$W_{\mathrm{RTN}}^{(2)}[\tau] = e^{-S_{\mathrm{RTN}}^{(2)}[\tau]} = \mathrm{Tr}(|\mathrm{RTN}\rangle\langle\mathrm{RTN}|)^{\otimes 2}X_{\tau}$$

• Ensemble average over random tensors

$$\mathbb{E}W_{\mathrm{RTN}}^{(2)}[\tau] = \sum_{[\sigma]} e^{-E[\sigma,\tau]}$$

$$E[\sigma,\tau] = -\sum_{\langle ij\rangle} J_{ij}\sigma_i\sigma_j - \sum_{i\in\partial} h\tau_i\sigma_i \quad (J_{ij} = \frac{1}{2}\ln d_{ij})$$

- Boundary spins \rightarrow entanglement region $\tau_i = \left\{ \begin{array}{ll} -1 & i \in A, \\ +1 & i \in \bar{A}. \end{array} \right.$
- Entanglement ~ spin correlation
- Entanglement entropy \sim free energy (tracing out bulk σ)

$$S_{\text{RTN}}^{(2)}[\tau] = S_0 - \sum J_{ij}\tau_i\tau_j - \sum J_{ijkl}\tau_i\tau_j\tau_k\tau_l + \cdots$$

Holographic Duality

 Multi-spin interaction in the Ising model reflects the non-local structure of many-body entanglement

- Entanglement structure approximately resolved by tensor network (PEPS)
 - as entanglement pairs (two-spin interaction)
 - at the price of introducing bulk tensors (projections)
 - bulk network geometry ~ emergent holographic geometry

Machine Learning Spacial Geometry

Ryu-Takayanagi: entanglement = area

$$S_{\Psi}(A) = \frac{1}{4G_N} |\gamma(A)|$$

- area of minimal surface in the bulk ~
 domain wall energy in the Ising model
- ER = EPR = Ising coupling

- Ising model → Deep Boltzmann Machine
- Input: entanglement features
- Train: network connectivity
- Result: holographic geometry

Entanglement Transition from Holographic RTN

- Entanglement Transitions: area-law to volume-law transition,
 e.g. many-body localization to thermalization transition
 - Phase transition in holographic Ising model

Ferromagnet (ordered) domain wall energy $\sim L_A$ volume-law entanglement

 Transition driven by bond dimension of RTN

R Vasseur, AC Potter, YZ You, AWW Ludwig, 1807.07082

Paramagnet (disordered)
domain wall energy ~ const.
area-law entanglement

Dynamics of Entanglement Feature

- We can "Quantize" the entanglement features
 - \bullet State EF \to vector: $|W_\Psi\rangle = \sum_{[\sigma]} W_\Psi^{(2)}[\sigma] |[\sigma]\rangle$
 - Unitary EF \rightarrow matrix: $\hat{W}_U = \sum_{[\sigma,\tau]} W_U^{(2)}[\sigma,\tau] |[\tau]\rangle\langle[\sigma]|$
- Unitary evolution of a state

$$|\Psi(t)\rangle = U(t)|\Psi(0)\rangle$$

will induce a (generally) non-unitary evolution of its entanglement features

$$|W_{\Psi(t)}\rangle = \hat{W}_{U(t)}\hat{W}_{U(t')}^{-1}|W_{\Psi(t')}\rangle$$

 $|W_{\Psi(t)}\rangle$ $\hat{W}_{U(t)}$ $\hat{W}_{U(t')}$

YZ You, Y Gu, 1803.10425

- As long as we know how to compute \hat{W}_U , we know everything about the full entanglement dynamics.
- In general a hard problem, but for random unitary circuit, the answer is known.

Random Unitary Circuit

Independent Haar random unitary gates (with locality)

A Nahum, J Ruhman, S Vijay, J Haah

F Pollmann, S Sondhi 1705.08910 ...

1608.06950; C Keyserlingk, T Rakovszky,

$$|W_{\Psi(t+1)}\rangle = \hat{F}|W_{\Psi(t)}\rangle$$
 (Floquet-like)

In each Floquet cycle: two steps

$$\hat{F} = \prod_{\langle ij \rangle} \hat{Q}_{ij} \hat{P}_{ij}$$

• Projection (proj. out domain walls)

$$\hat{P}_{ij} = \frac{1}{2}(1 + Z_i Z_j)$$

followed by Quantum fluctuations

$$\hat{Q}_{ij} = 1 + \frac{d}{d^2 + 1}(X_i + X_j)$$

- $-\nabla_t |W_\Psi\rangle = \hat{H}_F |W_\Psi\rangle$ enhance ferromagnetic correlations
 - Thermalization: para = area-law → ferro = volume-law
 - Mode decay $\langle [\sigma]|W_{\Psi}\rangle = e^{-S_{\Psi}[\sigma]} \sim e^{-t/\tau}$ (linear *S* growth)

Random Hamiltonian Dynamics

 Random Hamiltonian dynamics: unitary evolution generated by random Hamiltonian
 YZ You, Y Gu, 1803.10425

$$U(t) = e^{-iHt}$$

- ullet A quantum many-body system of N qudits
 - each qudit: d dimensional Hilbert space
 - Total Hilbert space dimension $D = d^N$
- Radom Hamiltonian H
 - ullet a D imes D Hermitian matrix acting on all qudits
 - ullet randomly drawn from Gaussian unitary ensemble $P(H) \propto e^{-\frac{D}{2} \operatorname{Tr} H^2}$ (fixed spectral radius)
 - Hamiltonian is non-local (i.e. not a sum of local / few-body operators), modeling a strongly thermalizing / chaotic system.

Random Hamiltonian Dynamics

- Random Hamiltonian v.s. Random Unitary
 - Random Unitary: locality, energy not conserved
 - Random Hamiltonian: energy conserved, non-local
- Tensor product structure of the Hilbert space still allows us to specify entanglement regions and define entanglement features
- Goal: Entanglement Features of $U(t) = e^{-iHt}$

$$W_U^{(2)}[\sigma,\tau] = \operatorname{Tr} U^{\otimes 2} X_{\sigma} (U^{\otimes 2})^{\dagger} X_{\tau}$$

• averaged over ensemble $\mathcal{E}(t) = \{U(t) = e^{-\mathrm{i}Ht} | H \in \mathrm{GUE}\}$ $W^{(2)}[\sigma,\tau] = \langle W_{U}^{(2)}[\sigma,\tau] \rangle_{U \in \mathcal{E}(t)}$

focused on Renyi index = 2 case.

Result of Entanglement Features

$$\begin{split} W^{(2)}[\sigma,\tau] &= W_{\text{early}}[\sigma,\tau] + W_{\text{late}}[\sigma,\tau], \\ W_{\text{early}}[\sigma,\tau] &= \sum_{\upsilon=\pm 1} D^{\frac{1}{2}(\upsilon\overline{\sigma\tau}+\upsilon)} F_{\text{early}}(\upsilon), \quad F_{\text{early}}(\upsilon) = \frac{f_{\text{early}}(\upsilon)}{Z_4(D)} \\ W_{\text{late}}[\sigma,\tau] &= \sum_{\upsilon_1,2=\pm 1} D^{\frac{1}{2}(\upsilon_1\overline{\sigma}+\upsilon_2\overline{\tau}+\upsilon_1\upsilon_2)} F_{\text{late}}(\upsilon_1\upsilon_2), \quad F_{\text{late}}(\upsilon) = \frac{f_{\text{late}}(\upsilon)}{Z_4(D)} \\ W_{\text{late}}[\sigma,\tau] &= \sum_{\upsilon_1,2=\pm 1} D^{\frac{1}{2}(\upsilon_1\overline{\sigma}+\upsilon_2\overline{\tau}+\upsilon_1\upsilon_2)} F_{\text{late}}(\upsilon_1\upsilon_2), \quad F_{\text{late}}(\upsilon) = \frac{f_{\text{late}}(\upsilon)}{Z_4(D)} \\ f_{\text{early}}(+1) &= D^3(4(D^2+6)(\mathcal{R}_{[00]}-\mathcal{R}_{[0]}) + 16(2D^2-3)\mathcal{R}_{[11]} + (D^2-3)(D^2-4)\mathcal{R}_{[22]} - 4D^2(D^2+1)\mathcal{R}_{[110]}, \\ &-4D^2(D^2-4)\mathcal{R}_{[211]} + D^2(D^2-3)(D^2-4)\mathcal{R}_{[111]}, \\ f_{\text{early}}(-1) &= 2D^5(10(\mathcal{R}_{[0]}-\mathcal{R}_{[00]}) + 4(D^2-1)\mathcal{R}_{[11]} - (D^2-4)\mathcal{R}_{[12]} \\ &+4(2D^2-3)\mathcal{R}_{[110]} + (D^2-3)(D^2-4)\mathcal{R}_{[21]} - D^2(D^2-4)\mathcal{R}_{[11]}, \\ f_{\text{late}}(+1) &= D^{9/2}(-2(D^2-4)\mathcal{R}_{[0]} + (D^4-11D^2+8)\mathcal{R}_{[00]} - 40\mathcal{R}_{[11]} - (D^2-4)\mathcal{R}_{[22]} + 4(D^2+6)\mathcal{R}_{[110]}, \\ f_{\text{late}}(-1) &= D^{9/2}((D^2+1)(D^2-12)\mathcal{R}_{[0]} - 2(D^4-12D^2+12)\mathcal{R}_{[00]} + 8(D^2+6)\mathcal{R}_{[11]} + 3(D^2-4)\mathcal{R}_{[22]} \\ &-20D^2\mathcal{R}_{[110]} - 2D^2(D^2-4)\mathcal{R}_{[211]} + 3D^2(D^2-4)\mathcal{R}_{[1111]}, \\ \mathcal{R}_{[0]}(t) &= \mathcal{R}_{[00]}(t) &= 1, \\ \mathcal{R}_{[0]}(t) &= \mathcal{R}_{[00]}(t) &= 1, \\ \mathcal{R}_{[11]}(t) &= \mathcal{R}_{[110]}(t) \\ &+ (2\mathcal{R}_{[11]}(2t), \\ \mathcal{R}_{[211]}(t) &= r_1(t)^2 + (-r_1(2t)r_2(t)r_3(2t) - 2r_1(t)r_2(2t)r_3(t) + + r_1(2t)^2 + 2r_1(t)^2)/D \\ &+ (2r_2(3t)-r_2(2t)-2r_2(t)+1)/D^2, \\ \mathcal{R}_{[1111]}(t) &= r_1(t)^4 + (-2r_1(t)^2r_2(t)r_3(2t) - 4r_1(t)^2r_2(t) + 2r_1(2t)r_1(t)^2 + 4r_1(t)^2)/D \\ &+ (2r_2(t)^2+r_2(t)^2r_3(2t)^2 + 8r_1(t)r_2(t)r_3(t) - 2r_1(2t)r_2(t)r_3(2t) - 4r_1(t)r_2(2t)r_3(t) \\ &+ r_1(2t)^2 - 4r_1(t)^2 - 4r_2(t) + 2)/D^2 \\ &+ (-7r_2(2t)+4r_2(3t)+4r_2(t)-1)/D^3, \\ r_1(t) &= \frac{J_1(2t)}{t}, \quad r_2(t) &= \left(1 - \frac{|t|}{|t|}\right)\Theta(1-\frac{|t|}{2D}\right), \quad r_3(t) &= \frac{\sin(\pi t/2)}{\pi t^2} \end{split}$$

Result of Entanglement Features

• To the leading order in $D = d^N$

$$W^{(2)}[\sigma,\tau] = \mathcal{R}_{[11\bar{1}\bar{1}]} D^{\frac{3+\overline{\sigma}\tau}{2}}$$

$$-2(\mathcal{R}_{[11\bar{1}\bar{1}]} - \mathcal{R}_{[2\bar{1}\bar{1}]}) D^{\frac{1-\overline{\sigma}\tau}{2}}$$

$$+(\mathcal{R}_{[00]} - \mathcal{R}_{[11\bar{1}\bar{1}]}) (D^{\frac{2+\overline{\sigma}+\overline{\tau}}{2}} + D^{\frac{2-\overline{\sigma}-\overline{\tau}}{2}})$$

$$-(2\mathcal{R}_{[00]} - \mathcal{R}_{[0]} + 2\mathcal{R}_{[2\bar{1}\bar{1}]} - 3\mathcal{R}_{[11\bar{1}\bar{1}]})$$

$$\times (D^{\frac{\overline{\sigma}-\overline{\tau}}{2}} + D^{\frac{-\overline{\sigma}+\overline{\tau}}{2}}) + \cdots,$$

Time dependence

$$\mathcal{R}_{[k]}(t) = \frac{1}{D^l} \langle \prod_a \operatorname{Tr} U(t)^{k_a} \rangle$$

Spectral form factor of GUE

J Cotler, N Hunter-Jones, J Liu, B Yoshida, 1706.05400

Region dependence

$$\overline{\sigma}=N^{-1}\sum_{i}\sigma_{i}$$
 (input)
$$\overline{\tau}=N^{-1}\sum_{i}\tau_{i}$$
 (output)
$$\overline{\sigma}\overline{\tau}=N^{-1}\sum_{i}\sigma_{i}\tau_{i}$$
 (coupling)

Holographic Ising Model

- Given $W^{(2)}[\sigma, \tau]$ as a Boltzmann weight, what kind of Ising model does it describe?
- Introduce hidden (bulk) variables to simplify the result

$$W^{(2)}[\sigma, \tau] = W_{\text{early}}[\sigma, \tau] + W_{\text{late}}[\sigma, \tau]$$

$$W_{\text{early}}[\sigma, \tau] = \sum_{v=\pm 1} D^{\frac{1}{2}(v\overline{\sigma}\overline{\tau} + v)} F_{\text{early}}(v),$$

$$W_{\text{late}}[\sigma, \tau] = \sum_{v_{1,2}=\pm 1} D^{\frac{1}{2}(v_1\overline{\sigma} + v_2\overline{\tau} + v_1v_2)} F_{\text{late}}(v_1v_2).$$

Holographic Ising Model

Early-time Ising model

$$E_{\text{early}}[\sigma, \tau; v] = -\frac{\ln d}{2} \sum_{i} v \sigma_{i} \tau_{i} - \frac{\ln D}{2} v$$

- Strong pinning field $\rightarrow v = +1$
- Direct coupling (max entanglement) between past & future
- Spacial geometry is fragmented (independent channels)
- Late-time Ising model

$$E_{\text{late}}[\sigma, \tau; v] = -\frac{\ln d}{2} \sum_{i} (v_1 \sigma_i + v_2 \tau_i) - \frac{\ln D}{2} v_1 v_2$$
• BTN: information falls into tensor v_1

- ullet RTN: information falls into tensor v_1 , gets scrambled, emits from tensor v_2
- A pair of temporally entangled black / white holes
- Random Hamiltonian dynamics → black hole formation

Thermalization and Quantum Chaos

- Two approaches to describe Thermalization
 - Equilibrium (static) approach: eigenstate thermalization hypothesis, level statistics, volume-law entanglement ...
 - Dynamical approach: quantum chaos, information scrambling, OTOC (butterfly effect), entropy growth ...
- Random Hamiltonian: (over)simplified model of ETH
- Many measures of quantum chaos (OTOC, entropy growth) can be formulated as entanglement features of unitary.
- Goal: learn about typical quantum chaotic behavior of manybody systems that exhibit eigenstate thermalization.
- Tool: Entanglement features of random Hamiltonian dynamics $W^{(2)}[\sigma,\tau] = \langle W_U^{(2)}[\sigma,\tau] \rangle_{U \in \mathcal{E}(t)}$

Thermalization and Quantum Chaos

Operator-averaged OTOC P Hosur, XL Qi, DA Roberts, B Yoshida, 1511.04021

Entropy growth from product state

Hayden-Preskill Problem

Can Bob decode Alice's qudits?

- Alice throws qudits to black hole B
- ullet B was maximally entangled with B'
- Bob collects radiation D at time t

P Hayden, J Preskill, 0708.4025

- Yoshida-Kitaev protocol
 - Teleportation fidelity

$$F = \langle A|A''\rangle^2 = e^{-I^{(2)}(A,C)}$$

$$\geq \frac{1}{1 + d^{2}(N_A - N_D)} \xrightarrow{d^{N_D} \gg d^{N_A}} 1$$

Hayden-Preskill Problem

- Modeling back hole dynamics by
 - Haar random unitary
 P Hayden, J Preskill; B Yoshida, A Kitaev
 - unitary generated by random Hamiltonian *
- Teleportation fidelity in terms of entanglement features

$$F = e^{-I^{(2)}(A,C)} = \frac{d^{N_B}d^{N_D}}{W^{(2)}(A,C)}$$

- Full scrambling takes a long time $t_{\rm s} = (d^{N_A}/\pi)^{1/3}$
- A sequence of time windows (Bob must seize the moment)

Random Floquet Dynamics

Chan-Luca-Chalker Model A Chan, AD Luca, JT Chalker, 1803.03841

$$U_F = VU = VU = \underbrace{V \underbrace{J_{12} \underbrace{J_{23} \underbrace{J_{34} \underbrace{V}}_{U_1} V}_{U_1 \underbrace{U_2} \underbrace{U_3} \underbrace{U_4}_{U} U}_{U_1 \underbrace{U_4} \underbrace{U_4} \underbrace{U}_{U} = \underbrace{\bigotimes_{i} U_i}_{U_i}$$

- On-site scrambling, followed by inter-site coupling
- U_i : Haar random, J_{ij} : Gaussian random $\langle J_{ij}^2 \rangle \equiv J^2$
- Locality + quasi-energy conservation
- Entanglement Features of random Floquet dynamics

$$W_{U_F^t}^{(2)}[\sigma,\tau] = \mathrm{Tr}(U_F^t)^{\otimes 2} X_{\sigma}(U_F^{-t})^{\otimes 2} X_{\tau} = e^{-E[\sigma,\tau]} \quad \text{WT Kuo, D. Arovas, YZ You (in progress)}$$

$$E[\sigma,\tau] = -\frac{\ln d}{2} \sum_i (\sigma_i \tau_i + 3) - \frac{J^2 t}{4} \sum_{\langle ij \rangle} ((\sigma_i - \sigma_j)(\tau_i - \tau_j) + (1 - \sigma_i \sigma_j)(1 - \tau_i \tau_j))$$

Summary

Entanglement Features

$$W^{(n)}[\sigma] = \exp\left(-(n-1)S^{(n)}[\sigma]\right)$$

- Defined for states and unitary operators They are related by $|W_{\Psi(t)}\rangle=\hat{W}_{U(t)}\hat{W}_{U(t')}^{-1}|W_{\Psi(t')}\rangle$
- Map to Ising model (or more general models)

$$S_{\Psi}^{(2)}[\tau] = S_0 - \sum_{ij} J_{ij} \tau_i \tau_j - \sum_{ij} J_{ijkl} \tau_i \tau_j \tau_k \tau_l + \cdots$$

- Make connections to tensor networks and holography
- Apply to random unitary / Hamiltonian dynamics ...

Thanks for your attention!