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Periodically Driven Quantum Systems

e Realizations in different platforms

Engineering artificial Light induced Quantum time crystals Floguet topological
gauge fields superconductivity Wilczek, PRL (2012) insulators
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Ultracold atoms Solid state Trapped ions, NV centers Polaritons
Flaschner et al. Science (2016)  Fausti et al. Science (2011) Zhang et al. Nature (2017) Karzig et al. PRX (2015)
Eckardt, RMP (2017) Mitrano et al. Nature (2016) Choi et al. Nature (2017) Nalitov et al. PRL (2015)
Ge, Broer, Liew PRB (2018)
driven, closed driven, open driven, closed driven, open
often non-interacting interacting short times interacting
= challenge: avoid indefinite heating in interacting, driven systems Genske, Rosch, PRA (2015)

= way out: coupling to a bath (eg. phonons, photons) Seetharam et al., PRX (2015)



Periodically Driven Quantum Systems

e Realizations in different platforms

Engineering artificial Light induced Quantum time crystals Floquet topological
S

Questions:

-~

What is the nature of phase transitions
in periodically driven, open quantum systems (3D)?

How to renormalize an open Floquet system? |

Fléas . (2015)
.(2015)
(1D closed disordered Ising: Berdanier, Kolodrubetz, Parameswaran, B (2018)
Vasseur, arXiv:1803.00019, arXiv:1807.09767) lon
often non-interacting interacting shorttimes™ © interacting

= challenge: avoid indefinite heating in interacting, driven systems Genske, Rosch, PRA (2015)
= way out: coupling to a bath (eg. phonons, photons) Seetharam et al., PRX (2015)



Periodically Driven Open Quantum Systems

e What is known
driving frequency ()

A 4
O 9
Q:O/ \ N1=0

Continuous symmetry _ .
breaking phase transitions * Lindblad limit

Equilibrium limit

Slowly driven regime: Kibble-Zurek mechanism Rapidly driven regime: unknown
¢ Kibble, JPA (1976)
0) . Zurek, Nature (1985)

—t e Plan:

adiabatic adiabatic

e Description of driven open
guantum systems

1T —"1T. e Modified criticality in the
Tobatic > infinitely rapidly driven limit
* Absence of criticality at rapid,
e ¢ saturates for ve ~ (T —T,) finite drive

e production of defects "\ driving rate

= Second order phase transition ‘masked’ by slow drive
= Exponents accessible
= Universality class not modified



Equilibrium vs. Non-equilibrium

driving frequency ()

[
O
0 N Q=0

| @
L~

4 N
drive

environment
\_ J

Op = —ilH,p]+Dlp| = €Tl = / DPe v 00l & o1, = §T [(F&f) +Rk)_18kRk]



Lindblad limit of driven, open quantum systems

e Quantum Optics: periodically driven and open quantum systems

4 )
external fields, e.g. laser
1 (“driven”)
quantum system
|

dissipative environment (“open”)

* exchange between system and bath
(e.g. energy, entropy, particle number)

e example: laser driven atom coupled to the radiation field (two-level system)

: A ‘ € > excited state e simple fact: drive essential to access
detuning Ax ereecperea G upper level
Rabi frequency —+— R K coupling to radiatiqn f_ield: e Implications:
spontaneous emission
laser drive ® no guarantee for detailed balance
frequency

* no obedience of the second law of
‘8 > ground state thermodynamics (state purification)




Lindblad limit e}

® microscopically system-bath setting
Re®|e)(g| + h.c. Q

atptot — —i[H + Hgp + H,Eaptot] — |g)

continuum of harmonic oscillators

microscopic
. A .
e typical regime: a "~ 1074 <1 Lindblad Eq.

£

£

= drop corrections in rotating wave approximation (+ Born-Markov): O~ =0 _ %
mesoscopic @

©

O

O

\4

e elimination of bath variables: Lindblad master equation
Lindblad operators

Oip = —ilH,p| + kY (LipL] — L{LIL;, ph) ¢ ‘

/ h d ) _ :I dri
M ~

system coherent evolution driven-dissipative evolution | environment |




Lindblad limit: interpretation

8 — —’L[H ] _I_ K (L LT _ l{LTL/}) drive
tpP s P i PLs; 9 i iy P :|
1\ J N _/ )
Y —~ L environment
coherent evolution driven-dissipative evolution

* interpretation: rewrite

Op = —1i —Z—ZLT )p + h.c. —I-IiZLZpLT

ensures probability
conservation (fluctuation)

"E — I Oitrp = 0

energy  decay (dissipation)



“What is non-equilibrium about it”

e Field theory representation: Keldysh functional integral for stationary states

e Schrodinger equation: evolving a state vector

10y ) (t) = H[Y)(t) = |9)(t) = U(t, t0)[) (o)

VVV o VYV

) (to)

e Heisenberg-von Neumann equation: evolving a state (density) matrix

Op(t) = —ilH, p(t)] = p(t) = U(t,to)p(to)U (¢, to)

U(t, tg) = e =10

VvV,

Ve VY VY

e Same is true for the Lindblad master equation:

Op = —ilH,p| + K> LipL} — L{LIL;, p} = L]p]

e Keldysh partition function \/ \/

+ contour v V

~
Z =trp(t - o0) =1 p(t)
-

AN

- contour /\ /\

t

= p(t) = ") p(t)

(to)



Keldysh functional integral

 quantum master equation:  Orp = —i|H, p| + D|p]
= —i(Hp— pH) +r Y (LipL] — SL1Lip — $pLIL;)
e equivalent Keldysh functional integral:

| e
Z = /D(CI’+,<I>—)€1(SM[¢+’@] B = ( 6 )

Sm [(I)-I—a (I)—] — /dt(¢>—k|—zat¢—l— o ¢i@8t¢_ o ZE[(I)-I—a (I)—])

L@y, @ |=—i(H —H )—r) (Lz',+L;r,_ — 3L Liy — %LI,_L@—>

H:I: = H((I)j:) etc.

= recognize Lindblad structure

= simple translation table (for normal ordered Liouvillian)
+ contour

® operator right of density matrix -> - contour p(rt)
-

® operator left of density matrix -> + contour

- contour



“What is non-equilibrium about it?”

 quantum master equation:  Orp = —i|H, p| + D|p]

Y Y

ﬁSH ﬁSD

J

e Keldysh partition function

4= /D(q)Jra (I)—)ei(SH[q’Jr’q’—HSD [®4,2-])
e equilibrium dynamics generated by a time-independent Hamiltonian alone (global [S+B] energy conservation)

SD — O Sieberer, Chiocchetta, Tauber, Gambassi, SD PRB (2015)
Aron, Biroli, Cugliandolo, SciPost (2018)
classical limit: Janssen (1976)

T3P (t,x) = B (—t +i3/2,%) D, — ( zi )

e associated “Ward identities” are equilibrium quantum Fluctuation-Dissipation relations to arbitrary order

= symmetry of Keldysh action under transformation

e compact functional formulation of KMS boundary condition

= the Liouville operator (or Sp) violates this symmetry explicitly
(memory of microscopic periodic drive)

= consequences of the absence of this symmetry on criticality?

\ /
[ _
v x_,




Many-Body Model

e generic microscopic many-body model: ( single particle pump )

:

9ip = —i[H.pl + Dl = L[y (manyoor
S

H = ggj( (% _ M) ggx + %(&Lgbx)Q ( single-, two-, ... body loss )

Dol = [ B pde— Hndlopl + % [ 6o~ 3oldunll +

single particle pump single particle loss
_ 72 972 1577272
e U(1) phase rotation symmetry R / [be pOx” — 9 Dx” P p}]
AN . A X
16 two particle loss
closed system Keldysh: open system Keldysh review
_ _ Gasenzer, Pawlowski, PLB 08;  Sieberer, Buchhold, SD, ROPP
e practical evaluation: Berges, Hoffmeister, Nucl. Phys. B, 09 (2016)
Many-Body Master Equation Keldy_s h functional Keldysh_ Fu_nctlonal
integral Renormalization Group

Wetterich, 93

: 1
8“0 — —’L[H, /0] + D[/O] eiF[CID] _ /D(Sq)eiSM[q)—qu)] (%Fk = %TI‘ [(Fl(f) + Rk) 8kRk]



Non-Eq. ¢* Theory: Phase Transition

 3D: mean field approximation ( SIE|E® PEMIEE DUl )
e study field expectation value é
f . N many-body
()(1) = tx{ep(t)] e
e mean field: factorize correlation functions f %
e consider spatially homogeneous configuration ( single-, two-, ... body loss )

(9x) (t) = $(t)

016 = i — (i = p) + (=X — w) [8]?] ¢

P 4 Bose condensation seen in
exciton-polariton systems

a
‘ Kasprzak et al.,

/,),l Tp Nature 2006
critical point

= Suggests continuous symmetry breaking phase transition in infinitely rapidly driven limit
(many-body laser threshold)




Driven Open Criticality:
Infinitely rapidly driven limit

L. Sieberer, S. Huber, E. Altman, SD,
PRL 2013; PRB 2014
U. C. Tauber, SD, PRX 2014
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Semiclassical limit: power counting microscopic

e Quantum master equation —> Keldysh functional integral, with action Lindblad Eq.

A
s= [ {6n0) (pn o) (50) + 200050, ~4 [+ 0) (62260, + 6720.00) + cc] |

QD‘J\ $c (’bq\ ¢ (PQ\ ,(P;Ik
o | MesOoSsCcopic
PR KA T iK AN i semiclassical
¢ e ¢: ¢ O P
e Gaussian sector close to a critical point: — 0

e retarded/advanced P (w,q) = Zw — (A+iD)q® — pu+i (v —7p) /2
* Keldysh component pPE — (v, + fyp) finite Markovian noise level

d— 2 d+ 2

e Canonical field dimensions: (D] = —— < (0g] = —

Coarse graining



Semiclassical limit: power counting microscopic —&T
e Quantum master equation —> Keldysh functional integral, with action Lindblad Eq. x
* * O PA ¢c 1 . *2 2
S = (¢c7 gbq) PR PK Qb =+ 27%% ) [()‘ + ZK’) (¢c (bc(bq —M+ C'C’] o
t,x q *
(PQ\ (Pc E
| mesoscopic ©
KA FiK semiclassical 3
(7))
o7 Y S
@)
e Gaussian sector close to a critical point: =0

e retarded/advanced P (w,q) = Zw — (A+iD)q® — pu+i (v —7p) /2
* Keldysh component pPE — (v, + fyp) finite Markovian noise level

d— 2 d—+ 2
e Canonical field dimensions: (D] = —— < (0g] = —

= Equivalent to MSRJD functional integral

= Equivalence to phenomenological semiclassical Langevin equations (phase coherence preserved)

o Wouters and Carusotto PRL (2006);
= Non-equilibrium analog of classical criticality Szymanska, Keeling, Littlewood PRL (2004)

= Possible to evade: non-equilibrium analog of quantum criticality (dark state engineering)
Marino, SD PRL (2016)



“What is non-equilibrium about it”, cont’d

e implication of equilibrium symmetry in semiclassical limit

e reversible and irreversible contributions to action: S = Sy + Sp

equilibrium dynamics non-equilibrium dynamics

atomic Bose Exciton-Polariton

two-body elastic

condensates / L collisions condensates
/ 5 > Re > Re
=" H <~ SH
e coherent and dissipative dynamics may e coherent and dissipative dynamics do occur
occur simultaneously simultaneously
e butthey are not independent e they result from different dynamical resources

\ 4
® O
Q:O/ \ 0O 1=0



Schematic RG flow

e How much information on breaking of detailed balance is lost at criticality?

e Flow in the complex plane of couplings: (Functional) RG for driven open systems

Im 4

A+ 1k

A+1D
>

Re
non-linear initial flow

e initial values: I'gapn, = S

Im

A

-

)

Re
linearized IR flow

e universal domain encoding
universality class

microscopic

Lindblad Eq.

mesoscopic
semiclassical

<
I [ "
Coarse graining

FP action purely RG

dissipative / aligned

> )
Macroscopic
Re

fixed point

= decoherence
= asymptotic thermalization
L. Sieberer, S. Huber, E. Altman, SD,

PRL 2013; PRB 2014
U. C. Tauber, SD, PRX 2014



Asymptotic Low-Frequency Thermalization

e global thermal equilibrium: all subparts in equilibrium with each other

<=> Temperature is invariant under the partition

—



Asymptotic Low-Frequency Thermalization

e global thermal equilibrium: all subparts in equilibrium with each other

<=> Temperature is invariant under the partition

7 temperature T/




Asymptotic Low-Frequency Thermalization

e global thermal equilibrium: all subparts in equilibrium with each other

<=> Temperature is invariant under the partition

e =

RG: <=> Temperature invariant

===

dx

¢ temperature T/

RG: tracing out momentum
shells



Asymptotic Low-Frequency Thermalization

e global thermal equilibrium: all subparts in equilibrium with each other

<=> Temperature is invariant under the partition

e =

RG: <=> Temperature i f;' invariant

=

A qy = not true out of equilibrium
= not true for our driven-dissipative system
at high momenta

dx

RG: tracing out momentum
shells



Asymptotic Low-Frequency Thermalization

e emergent scale invariant effective temperature in the universal low-momentum regime:
asymptotic thermalization

numerical
evaluation

0.5

VK
4 D3/2

XG%<

!

Ginzburg scale /

O'—14 -12 -10

<

-8

flow to long wavelength/small momenta, constant in equilibrium

thermal
equilibrium



New universality: Equilibrium vs. non-equilibrium fine structure

e RG approach to fixed point

non-equilibrium dynamics equilibrium dynamics
m 1 Im 4
u3 U u
initial flow
K
" Re // s Re
; >
U
Im Y
% long-wavelength K
flow
| . Re H// , Re
* |owest eigenvalue e eigenvalue of flow speed

= jdentifies new independent critical exponent, measuring universal decoherence
= equilibrium and driven systems in different dyn. universality classes
= physical reason: independence of coherent and dissipative dynamics



Periodically Driven Open Criticality:
Rapidly Driven Regime

________________________

Ordered phase

5t

S. Mathey, SD, arxiv:1807.02146

driving frequency ()

L~

4
\

O
O~ 1=0



Basic Physical Picture

* First guess: fast driving scale {) => no effect on long wavelength critical properties

e But: energy not conserved, defined only mod(Q): ‘high’ and ‘low’ energies not well defined

(can exchange energy quanta n - {2 with drive)

* Pole structure of single particle Green’s function (dynamic susceptibility) with bounded spectrum

undriven, open system

A

(W

approach to
criticality

G'(w,q) = :
w—(€q —17q) } =0 W
bounded decay
rate spectrum
small momenta:

1 pole: |

Eq = Wo + 2Mets

Yqa = + Da® + ...
— () at critical point

ordering into shells

1 q2—|—... Y

J energy bandwidth (e.g. lattice system)



Basic Physical Picture

e First guess: fast driving scale () => no effect on long wavelength critical properties

® But: energy not conserved, defined only mod(Q): ‘high’ and ‘low’ energies not well defined

(can exchange energy quanta n - {2 with drive)

® Pole structure of single particle retarded Green’s function with bounded energy / decay rate spectrum

periodically driven, open system: Floquet theorem (linear PDES)
I [w

g _ >
rapid drive: approach to

criticality

|44

= Periodic drive leads to massive degeneracy of near critical poles L _
= Effect on criticality not obvious

= Need to treat on equal footing, but RG possible within each strip



Setup of the problem: Mesoscopic action microscopic

Periodically driven
Hamiltonian coupled to
bath

® microscopically: periodically driven Hamiltonian on a lattice
(e.g. hopping, interaction), coupled to bath

MesOoSCcopic

® mesoscopic action for finite temperature bath time dependent

couplings

s=| L7 [0, — (—KV? + i+ 2]6:?)] ¢ + c.c. + 2iy|¢g] )

generator of dynamics noise level

e all couplings complex and periodically time dependent (simplicity: just (%), g(t)) |
Macroscopic

® Kkey requirements:
e drive respects U(1) phase rotation symmetry
e drive cannot be factored out of generator of dynamics (accidental
equilibrium symmetry)

e synchronization to Floquet stationary state

,u(t) _ Z e—ithlun’ g(t) _ Z e—ithgn

n n

= to be found {ftn,Gn, -}

Coarse graining



Explicit symmetry breaking and new couplings

®* new couplings: symmetry point of view

® explicit symmetry breaking: continuous time translations —> discrete time translations

d(t) — O(t + At) > D) > (t+n-X)
At arbitrary T integer
° {,un;éOagn;éO, ...} ruled out only for

e undriven problem (continuous time translations)
e emergent: infinitely rapidly driven limit (averaging out, Lindblad limit)

= here: need to classify relevance of new couplings at critical point

* Analogous: external symmetry transformations: continuous rotations —> discrete rotations
e example: Potts model, U(1) ~ O(2) — Z3 U(1) degeneracy

e New correlation length scale around discrete
degenerate minima

= That case: single pole but more relevant couplings:
can lead to fluctuation induced first order transition

Golner, PRB (1973) Reviews: Wu, RMP (1982); Aharony, J Stat
Manuel Carmona, Pelisetto, Vicari, PRB (2000) Phys (2003)



Exact single particle Green’s function

* Floquet theorem (time-periodic linear partial differential equations), stationary state:

Glt+T0-0) =3 e @) =% / e—i[nmwﬂ/gn(w)

periodic in center-of-mass time t Wigner Green’s functions

e gsolution:

left general here

i+ M(t)p =€, M(t) = Kp? + p(t) «—

= Gr(t,t) = —if(t — t)e! Jo ME)d” Mo = %/ﬁﬁ M(8)dt = Kp? + i
27
Q [fa . Im (2[M (t) — Mo]/Q2)
= Gp.,lw) = — dte'™w?
Rin (W) 27T ,/0 Z w + My + mTQ

Bessel functions of
first kind



Approximate single particle Green’s function

e exact Wigner Green’s function
27

Q o . Jm (2IM (t) — My /Q)
G " — = dt mwt E :
Rin (W) 27T /0 ¢ — w + My + —"%Q
e Kkey properties: A | W
>

approach to criticality T

o) 5(90) 0(‘.9‘1)

= infinitely many degenerate poles become critical simultaneously

= parametric suppression, ordered by distance from central one (%")n

* Ordering principle: Expansion in inverse drive frequency

1 Hn

Gro(w) = G Rrinzo(w) =
(%2)°" — (w+ Kq + po)?

w+ Kq?+ o’
e upto O(Q1): first correction to rotating wave approximation



Renormalization group flow

(g —€/d
e fixed point coordinates gg ~ 47r2£/5 } usual Wilson-Fisher fixed point
x* 0

time averaged!

o~ Voss — “Ypump
relevant direction <—>
needs fine tuning to reach critical point

A \*;__,
$ P e— —

: <

§0 interaction

time averaged!




Renormalization group flow

(g —€/d
e fixed point coordinates g(’? ~ 47T2€/ /5 } usual Wilson-Fisher fixed point
e=4—d P 0

e two relevant directions

e I defines a new independent critical exponent, at O(Q2™ 1) x O(e)

Vd — 1/6




Phase diagram

e Drive scale turns critical into bicritical point (two relevant directions)

drive parameter

typical experimental trajectory

/

distance from

Ordered phase

transition at Q! = 0

e © = 0 : usual critical physics is visible, e.g.

e = # 0: correlation length saturates to

e infinitely rapidly driven smoothly recovered as & ~ 0Ot =0

£~ 5tV

ES T




Phase diagram

e Observability

drive parameter

typical experimental trajectory

Ordered phase

/

distance from
transition at Q! = 0

e width of saturation window hosts the new critical exponent

At] 2 |3]"




Phase diagram: Nature of Phase Transition

e Fluctuation induced first order phase transition

drive parameter

typical experimental trajectory

Symmetric phase

(symmetry intact)

@ Perturbation theory converges despite driving

Ordered phase

(broken symmetry)

ot

/

distance from
transition at Q! = 0

* Phases macroscopically distinct by symmetry breaking pattern

e Correlation length remains finite despite symmetry breaking transition

analogies:

gauged vector models

= Fluctuation induced, weak first order phase transition

superconductors

Coleman, Weinberg, PRD (1973); Halperin, Lubensky, Ma, PRL (1974); Fisher, Nelson, PRL (1974)

Goldstone modes



Critical Degeneracy: Coleman-Weinberg phenomenon
Halperin-Lubensky-Ma

e Multiple gapless modes: Critical mode coupled to non-critical gapless modes

= Fluctuation induced first order phase transition (w/o explicit symmetry breaking)

e gauged vector models Coleman, Weinberg, PRD (1973)

e superconductors Halperin, Lubensky, Ma, PRL (1974) and many after!
e Goldstone modes Fisher, Nelson, PRL (1974)
® [ntuition: eliminating the non-critical mode 0D
V(1) V(¢1)
potential landscape for mode
undergoing phase transition —>
foen |\/ \o/
Vi(pr) V(g1)
—> —>
/D¢2,> /D¢2,>

e alternatively: RG picture, runaway flow signals generation of new length scale



A

Picture: fluctuation induced many-body Kapizta pendulum

Citro et al., AoP (2015); Lerose, Marino, Gambassi, Silva, arxiv:1803.04490

* renormalization of n = 0 sector due to higher FBZs
* 1-loop effective potential for n=0: interaction sign change g(l)'IOOp <0

® suggests generation of additional minimum due to fast drive
via Kapitza mechanism

® universal: critical degeneracy guaranteed by Floquet theorem

P2
V(¢1) \ / V(¢1)
potential landscape for mode
undergoing phase transition —>
[Pees [\ ) \e/
V(g1) V(g1)
— —
/D¢2,> /D¢2,>

e alternatively: RG picture, runaway flow signals generation of new length scale



Outlook: RG formulation of Kibble-Zurek mechanism

e “dual” limit € — 0 a = T (2[M (t) — Mo]/Q
/ dteinwt Z m ( [ ( ) - 0]/ )
0

Cor w+Mo—|—mTQ

e exact Wigner Green’s function Grg.,,(w)

e expansion in powers of ) produces derivative expansion of the drive function
pt)=p+up -t+.. gt)=g+4g -t+..
e follow the above program:

e RG equations

, o | “ ) . o [ X ~
85 = —2ii — 4245 1 o = —dgpt — 4| szﬂA g I
T 2L+ f)? L+al |7 144
27Q4) 3 o e 20027l |- |
Hg= (4 d)g | 10[_732{]" 1L L — g = —(6—d)g - [ ' 1],(11 q — gH :
1+ (1 + fi) 4(1 + p)* L+ g (14 p) l+/.'-
e Wilson Fisher fixed point: unmodified
4-d 2 4 5(4 — d) :
* * d—2__d/2
U= —- . =277 1" d /2| —= , ) ! =10 =1
/ o-d° 7 =g J

e stability matrix: linearize around fixed point



Outlook: RG formulation of Kibble-Zurek mechanism

“dual” limit 2 — 0

() Q .
exact Wigner Green’s function Gr.,(w) / dte'™? Z
0

27

T on

Jm (2[M () — Mo]/$)
w—|—MO—|—mTQ

expansion in powers of {)produces derivative expansion of the drive function

gt)=g+g -t+..

pt)=p+u -t+ ..

follow the above program:

e structure of stability matrix

{ 24 (i:j+i/'(‘)‘

_205,4(7)*
\ A' —_— (-|+/"‘):‘
0
\ 0
(M X
- 0 M,

= additional relevant direction, as in opposite limit

1_&;‘! -.;n“," y o‘
l-ﬂf'-: » —( l"fl‘: ')-j 0 \
(d —4) + (—-“L_"(ff’,: ¥ ',(‘Ti,’,' )). 0
: 44 _4549° _ 45y
) l+(l+[l')2 1+ p*
, .)IL\'. a*)* . 2 ,'(.(-‘ . . .y
0 — AT d -6+ 3rus, ) leading eigenvalues (critical
exponents)
2
: Y1 = 2 — Ze€
) with My = —2 4+ M, 0 5
i ~ — -
— Y2 Y1
difference in canonical dimension identical loop effect!

= No independent information (at one loop), unlike opposite limit!



Outlook: RG formulation of Kibble-Zurek mechanism

e “dual” limit € — 0 a = T (2[M (t) — Mo]/Q
/ dteinwt Z m ( [ ( ) - 0]/ )
0

_% W+MO+mTQ

e exact Wigner Green’s function Grg.,,(w)

e expansion in powers of ) produces derivative expansion of the drive function
pt)=p+up -t+.. gt)=g+4g -t+..

e follow the above program:

®* phase diagram e interpretation: Kibble-Zurek
u' ~ € ramp speed

\ 4

1 {
\ 1
L < - saturation to
4 ~,—=1/(y+2)
E~pt
Ordered p metric phase A
- J "
\‘ >
’ b . . 5
4 - diabatic freeze out at t

r A
r \
| | A

= Kibble-Zurek scaling reproduced



Outlook: RG formulation of Kibble-Zurek mechanism

e “dual” limit 2 — 0 2m
0

_% w—|—MO—|—mTQ

e exact Wigner Green’s function Grg.,,(w)

e expansion in powers of ) produces derivative expansion of the drive function
pt)=p+up -t+.. gt)=g+4g -t+..

® open: quantitative test of Kibble-Zurek hypothesis of non-modification of critical exponents
(structure of M4, Mo at two-loop order)

e guess: structure prevails

e () — (0 :Kibble-Zurek: infrared modification => no change of universal behavior
e Q! — 0: ultraviolet modification => universal behavior possibly changed

origin of each independent critical exponent must be associated to a UV scale

eo.  (¢*(r)9(0)) ~ L* ¢ ~@

physical length experimentally
dimension observed scaling




Conclusions and Outlook | _ AN T

e Absence of criticality in rapidly driven quantum systems
above lower critical dimension Ordered PLAEE

ot

e Mechanism

e Degeneracy of near critical poles
=> new relevant direction at infinitely
rapidly driven fixed point

e Ordering principle in rapidly driven limit .

0(QY)

e completes picture of vicinity of established fixed points

fluctuation induced first order
(similar Coleman-Weinberg)

)
continuous \> 4 4 continuous
Q=0

masked (Kibble-Zurek

= connection between the two limiting regimes?

e applicability in “pre-heating” states of closed Floquet systems (system as its own bath)?



