
CHAPTER 2

Geophysical inverse problems

2.1 Introduction . The art of geophysics is to make inferences of the properties of the Earth from
measurements made at the Earth’s surface. An example of such a problem is the inference of the
velocity structure as a function of depth from travel time curves. Can we mathematically answer the
question of what is really resolved by the data we have? These notes are directed towards addressing
this question.

The solution of an inverse problem can be formally split into four parts:
1) existence

2) uniqueness
3) construction
4) evaluation.

Most geophysicists are obsessed with part 3 – finding a model which is consistent with the data. The
first two parts are of interest primarily from a mathematical point of view and part 4 – model evaluation
is extremely important from a practical point of view.

To solve an inverse problem we must already have solved the forward problem, i.e., we must have
developed the machinery to compute predicted data from a model. This requires a mathematical model
and there will always be assumptions built into this. Suppose we have measured the mass and moment
of inertia of the Earth. If the Earth has a spherically symmetric density distribution we can write

M = 4π

R∫
0

ρ(r)r2 dr (2.1)

and

C =
8π

3

R∫
0

ρ(r)r4 dr (2.2)

By assuming that the Earth has a spherically symmetric density distribution we have simplified our
problem considerably. These equations represent the forward problem – given ρ(r), compute M and
C. The inverse problem is – given M and C, compute ρ(r). This type of problem is the simplest to
solve because it is linear. If the density is doubled everywhere, M and C are doubled. Quite a lot of
theory exists for linear problems and we shall look at this type of problem in detail. Most geophysical
inverse problems are non-linear and we often linearize about some starting model which is (we hope)
close to the final model. Very little can be said in general about non-linear problems except that there
may be multiple solutions to the problem which are not close to one another in solution space. Some
techniques have been developed which can efficiently search model space (e.g. genetic algorithms,
evolutionary programming, etc) and can handle strongly non-linear problems providing the number of
model parameters is not too large. We shall not consider these further here.

2.2 Linear inverse problems . We shall first write our linear problem in a more general way:

1

di ± σi =

R∫
0

Gi(r)m(r) dr (2.3)

di is the ith datum and has an error σi, Gi(r) is a “data kernel” for the ith datum and m(r) is the model.
In our example we have two data:

d1 = M and d2 = C

G1 = 4πr2 and G2 =
8π

3
r4

m(r) = ρ(r)

The first question we shall consider is one of existence. Is the data consistent with our mathematical
formulation of the problem? In our example the question is – does any density distribution ρ(r) exist
which would predict our data? It should be obvious to you that it does – however, there are some cases
where this may not be true – our mathematical formulation may be inadequate.

The question of uniqueness can be simply answered for the linear inverse problem. If there is one
solution consistent with a finite dataset, there are an infinite number of solutions consistent with the data.
In practical problems we always have a finite amount of data. Sometimes we can artificially generate
an infinite dataset. For example we may have a travel-time (T − X) curve which we have obtained
by fitting a polynomial to some data. T is then formally defined for every X so we have an infinite
dataset. It turns out that in this problem a unique solution exists, i.e., there is a unique velocity-depth
distribution which exactly fits our T − X curve. It also turns out that this is a very bad way of solving
the problem. The model generated is very sensitive to details of the T − X curve and can lead to some
strange unphysical features, e.g., velocity triplications in depth!

This leads us to the question of model construction. This is the easiest part and there exist many
methods of generating continuous functions of depth (say) from a finite dataset. Generally they involve
some additional subjective constraints, e.g., the model must be geophysically reasonable. Often the
model is parameterized in some way and we consider this in detail next.

3. The need for parameterization.

Consider a generic linearized inverse problem:

di ± σi =

R∫
0

Giδm dr (2.4)

where di is a datum such as the difference between an observed frequency of free oscillation of the
earth and one calculated for a starting model, Gi is some continuous kernel which we can compute
and δm is a continuous model perturbation. When we have relatively few data, it is possible to avoid
parameterization of the model and make an expansion of the form:

δm =
∑

i=1,N

aiGi(r) (2.5)

where N is the number of data. Inserting this into equation 4 gives

2

d = ΓΓΓ · a where Γij =

R∫
0

GiGj dr (2.6)

and ΓΓΓ is a matrix which is of dimension N ×N . Equation 6 can be solved in a variety of ways (e.g., we
can impose smoothness constraints on the model perturbation or on the total model) and we can explore
the trade off with fit to the data. We can also look at the ability of our data to resolve features of our
models using Backus Gilbert theory which, though we do not have time to cover it here, is discussed in
detail in an accompanying pdf by Masters and Gubbins (2003).

Unfortunately, once N exceeds a few thousand, the computational burden of dealing with huge
matrices becomes too great. The conventional way around this is to parameterize the model by expanding
it in a set of basis functions where the number of parameters is chosen to be computationally manageable:

δm =
∑

i=1,M

aifi(r) (2.7)

where M is the number of parameters. Of course, in 3D tomography, the basis functions f are functions
of r, θ, and φ. Substituting 7 into equation 4 gives

d = A · a where Aij =

R∫
0

Gifj dr (2.8)

and A is a matrix which is of dimension N × M .
The choice of basis functions in equation 7 can impact the kinds of models we can recover and can

also impact the computational difficulty of solving equation 8. In global tomography, the choice of
basis functions has, for many years, involved the use of spherical harmonics for parameterizing lateral
variations:

δm =
∑
s,t

δmt
s(r)Y

t
s (θ, φ) (2.9)

where the radial expansion coefficients δmt
s(r) are further parameterized either in global functions

(e.g. Legendre polynomials or Chebychef polynomials) or as local functions (e.g. layers or B-splines.
The reason for the choice of spherical harmonics is that these are efficient for parameterizing the
long-wavelength structure which dominates many of the seismic datasets and are the natural basis for
interpreting mode structure coefficients. Unfortunately, a consequence of using global bases is that every
datum effectively becomes sensitive to the entire model so that the matrix A is very dense. This means
that global models using spherical harmonics are typically limited to about 10,000 model parameters
– if we divide the mantle up into roughly 20 layers, each layer could have about 500 parameters. A
spherical harmonic expansion up to degree l has (l+1)2 expansion coefficients so this means l is limited
to about 21. If we recall that

ka = l + 1
2 =

2πa

λ
(2.10)

where k is wavenumber, λ is wavelength, and 2πa is the circumference of the earth (about 40,000 km),
we find that the minimum wavelength we can capture is about 2000 km. Unfortunately, dynamically
interesting structures such as slabs typically have much smaller dimensions than this (and many of our
data are, in principle, sensitive to small wavelength structure). This has motivated the use of local

3

bases in global tomography (e.g. blocks of uniform lateral dimension, equal area blocks, non-uniform
distribution of blocks mimicing data sampling, tesselations, etc).

Why are local bases so useful? Let us suppose we have several hundred thousand travel time
measurements. To a fairly good approximation, ray theory can be used to interpret such data so each
datum is sensitive to only a small fraction of the total number of parameters in the model (i.e. along a
particular ray). For example, using blocks of lateral dimension 4 degrees at the equator (this corresponds
to a surface wavelength of about 880km or an l of about 45 if we had done a spherical harmonic expansion)
gives roughly 2500 blocks per layer for a total of 50,000 model parameters for a 20 layer model. However,
each datum samples only about 1% or less of the blocks so each row of the matrix A will have less then
500 non-zero entries. Sparse matrix techniques can then be efficiently used to solve equation 8.

4. Finding a model

Let us suppose we are solving the problem

A · x = d (2.11)

for the vector x. Further, we shall assume that we have divided each row of this system of equations by
the observation error on the datum so that the data vector d has a covariance matrix which is just I (i.e.
we are assuming our data are statistically independent from each other. If our sytem of equations (11)
were well-conditioned, we might just find the least-squares solution:

x̂ = (AT A)−1AT d (2.12)

which minimizes (A · x̂−d)2. In reality, A is usually not well-conditioned and AT A is even worse (the
condition number is effectively squared) so the solution (12) is rarely chosen. One way around squaring
the condition number is to use a singular value decomposition (SVD) on equation 11. The matrix A is
decomposed into singular values and matrices of left and right eigenvectors:

A = UΛΛΛVT (2.13)

where U has dimension N ×N and V has dimension M ×M and ΛΛΛ is a M ×N with non-zero diagonal
elements. Note that UT U = I and VT V = I. The least-squares solution in terms of the SVD is

x̂ = VΛΛΛ−1UT d = A+d (2.14)

where A+ can be thought of as the (generalized) inverse of A. If A is not well-conditioned, it will have
some small singular values which will generally lead to some poorly determined contributions to x̂. To
see why this is so, consider the covariance matrix of the model. To get the model we are taking a linear
combination of data: A+d. Now d has covariance matrix I so x̂ has covariance matrix:

A+I(A+)T = VΛΛΛ−1UT UΛΛΛ−1VT = VΛΛΛ−2VT (2.15)

The square roots of the diagonal elements of this matrix are the errors on our model parameters. Clearly,
small singular values are going to make these errors large. One way to avoid this is to exclude small
singular values from the sums implicit in equations 14 and 15 but this will mean that A+A will no
longer be I. in fact, substituting 11 into 14 gives

x̂ = A+Ax = Rx (2.16)

4

and the matrix R = A+A is sometimes called the ”resolution matrix”. In a perfectly resolved system,
R = I but, in general, each model element estimated will be a linear combination of all the model
elements. For the truncated SVD approximation to the generalized inverse, R = VVT . We use the
resolution matrix to estimate how much we are ”blurring” the model.

The process of throwing away small singular values is an example of ”regularization” of the inverse
problem. It is not a commonly used method because the model we end up with doesn’t satisfy any
particularly sensible optimization criterion. Usually we seek a model which has some property optimized
and still adequately satisfies the data. For example, we might seek a model which has minimum first
or second derivative. Let D be some ”roughening” operation on the model. The we might want to
minimize

f = (Ax − d)T (Ax − d) + λ(Dx)T Dx (2.17)

where the parameter λ controls the degree of smoothing. Expanding out the brackets and taking the
derivative with respect to x and setting to zero gives

x̂ = (AT A + λDT D)−1AT d (2.18)

Clearly, setting λ to zero gives us our least-squares result. Comparing equations 14 and 18 gives
A+ = (AT A + λDT D)−1AT and we can use 15 and 16 to estimate the model covariance matrix
and the resolution matrix. Increasing λ will result in models which have a smaller value of xT DT Dx.
One choice for D is I which results in a process called ”ridge regression” and ends up minimizing the
Euclidean length of the solution vector. This turns out to be a bad thing to do in tomography as it results
in models which have wildly underestimated amplitudes. A good choice for D is the first difference
operator which in 1D looks like:  1 −1 0 0 ...

0 1 −1 0 ...
0 0 1 −1 ...

 (2.19)

In tomography, we use this for for smoothing in the radial direction and we use a form which minimizes the
sum of the first differences between a block and its four nearest neighbors laterally for lateral smoothing.
In practice, very different degrees of radial and lateral smoothing are required in the tomography problem
because radial and lateral length scales are so different for mantle structure.

We have already complained about forming matrix products like AT A when the matrices are ill-
conditioned and, in any case, making AT A can itself be time consuming (and may remove the sparsity).
In practice, we construct the following equivalent system:(

A
λ

1
2 D

)
x =

(
d
0

)
(2.20)

and solve this rectangular system using SVD – or more likely a solver which takes advantage of the
sparseness of the matrices A and D.

One final technical point about solving equation 20 is that we can help the conditioning of the system
by solving a slightly different system:

Cy =
(

A
λ

1
2 D

)
Wy =

(
d
0

)
where y = W−1x (2.21)

for y then getting x from x = Wy. W can be chosen in a variety of ways – one is to make it a diagonal
matrix such that the Euclidean lengths of the columns of C are the same – this makes the range of singular

5

values of C much less extreme and also speeds up convergence of some of the iterative techniques we
discuss in the next section. This process of weighting is sometimes called ”preconditioning” of the
system and whole books have been written on the topic.

We now consider some ”iterative” techniques for solving large systems of (hopefully) sparse equa-
tions. Such techniques can operate on one row of the matrix at a time (and are sometimes called
row-action methods)

5. True iterative techniques

For simplicity, we go back to equation 11: Ax = d though we are more likely to be solving something
like equation 21 in practice. Let xq be the q’th iterate and define the residual vector

rq = d − A · xq (2.22)

Now we want to perturb xq to get a better answer. One way to do this is to work one equation at a time.
Let ∆xq be the desired perturbation. We choose ∆x0 to be the perturbation that makes the first element
of r0 be zero, ∆x1 is chosen to make the second element of r1 zero and so on – we then cycle through
the equations until we get convergence. To get a unique perturbation, we choose the one that has ‖∆xq‖
minimized. Thus we minimize (

Aij∆xq
j − rq

i

)2

Then

∆xj =
Aijri∑

k A2
ik

(2.23)

This is the original procedure of Kaczmarz and is not terribly efficient. One popular modification to this
is to compute the correction for each row (as above) and then average all the corrections to get a mean
∆x:

∆xj =
1
M

M∑
i=1

Aijri∑
k A2

ik

(2.24)

where M is the number of non-zero elements in Aij . This process is called the Simultaneous Iterative
Reconstruction Technique (SIRT) and is still commonly used. Some modifications are described in
Hager and Clayton (1989). A general family of SIRT methods is given by

∆xj =
Ω
γj

M∑
i=1

Aijri

ρi

where

γj =
∑

i

|Aij |α, ρi =
∑

k

|Aik|2−α

with 0 < Ω < 2 and 0 < α < 2. Hager et al use (α = 1,Ω = 1). It turns out that SIRT as described
above converges to a solution which is not the least squares solution of the original system of equations
and some weighting must be applied to correct this (van der Sluis and van der Vorst, 1987). SIRT works
well in practice but it is now more common to use a conjugate gradient method – one particular variant

6

called LSQR has become popular in seismic tomography, probably because it was popularized in the
mid 80’s by Guust Nolet.

6. Gradient (Projection) techniques

Consider the function defined by

f(x) = 1
2 (A · x − d)2 (2.25)

In two dimensions (x = x1, x2), f is a surface which has hills and valleys. Expanding out this function
gives

f = 1
2 (A · x − d)T (A · x − d)

= 1
2 [dT · d + xT · AT · A · x − 2xT · AT · d]

Now define the square symmetric matrix B = AT · A and the vector b = AT · d then

f = 1
2 [dT · d + xT B · x − 2xT · b]

The first term on the right is just the length of the data vector so we define the misfit function φ(x) as
the last two terms:

φ(x) = 1
2 xT B · x − xT · b (2.26)

(This is the same function as f with all the same hills and valleys but with an offset removed.)
The gradient of φ with respect to x is simply

∇φ(x) = B · x − b (2.27)

At any point xk on the surface, the downhill slope is given by

−∇φ(xk) = b − B · xk = rk (2.28)

and is actually zero at a solution which fits the data (B · x − b = 0)

Our procedure is to find x by moving in a sequence of directions which take us down the misfit
surface. Let

xk+1 = xk + λkuk (2.29)

where uk is a direction we choose to go in. We can find the value of λk (assuming uk is specified) that
minimizes

φ(xk + λkuk)

φ = 1
2 (xk + λkuk)T · B · (xk + λkuk) − (xk + λkuk)T · b

so

∂φ

∂λk
= uT

k · B · xk + λkuT
k · B · uk − uT

k · b = 0

7

so

uT
k · (B · xk − b) + λkuT

k · B · uk = 0

λk =
uT

k · rk

uT
k · B · uk

(2.30)

The next question is how to specify uk. If we choose uk = rk we get the ”steepest descent algorithm”
(remember r is the local downhill direction – see equation 28):

xk+1 = xk + λkrk where λk =
rT

k · rk

rT
k · B · rk

(2.31)

This isn’t always a very good idea since it is possible to go from one side of the valley to another –
rather than going down the middle. A better method is to chose directions so that they are ”conjugate”
(perpendicular in some sense) to all previous directions.

Reconsider equation 29:

xk+1 = xk + λkuk

Note that xk+1 is actually a linear combination of all the directions taken to date: u1...uk – if there are
N model parameters, then the final x can be completely specified by an expansion in N (orthogonal)
directions:

x = λ1u1 + λ2u2 + · · · + λNuN

If the directions were truly orthogonal to each other, we could just dot this equation with the transpose
of the j’th u and that would pick out the j’th term. It turns out that this isn’t computationally helpful –
but it is helpful to make the directions ”B-orthogonal” which means that

uT
k · B · uj = 0

Applying this to the above equation gives

uT
k · B · x = uT

k · b = λkuT
k · B · uk

A conjugate-gradient algorithm can now be developed. We start with x1 = 0 and compute r1 = b.
For the first direction, we choose steepest descent so u1 = r1 and we get λ1 from equation 30. We are
now at point x2 and can compute r2. In steepest descents, r2 would be our next direction but this is not
”B-orthogonal” to the previous direction. To achieve this, we let the new direction be

uk+1 = rk+1 + γkuk (2.32)

Dotting through by (B · uk)T gives

γk = −uT
k · B · rk+1

uT
k · B · uk

This form for γk is not computationally optimal as we shall see. To get our final algorithm, we first note
that the r’s can be computed recursively. Multiply equation 29 by B and subtract b from both sides:

8

B · xk+1 − b = B · xk − b + λkB · uk

so

rk+1 = rk − λkB · uk (2.33)

We can further manipulate the above formulae to get some identities which allow us to compute λk and γk

more efficiently. First, note that we recover equation 30 from equation 33 if we require uT
k · rk+1 = 0.

Forcing this to be true and dotting rT
k+1 into equation 32 gives the result that rT

k · uk = rT
k · rk.

Furthermore, if we dot rT
k+1 into 30 and use equation 30 for λk and the above formula for γk, we get

rT
k+1 · rk+1 = rT

k+1 · rk − λkrT
k+1 · B · uk = rT

k+1 · rk + γkuT
k · rk (2.34)

Similarly, dotting (B · uk+1)T into 32 shows that uT
k · B · uk = rT

k · B · uk. Dotting rT
k into 33 and

using this result allow us to show that rT
k+1 · rk = 0. These identities allow us to compute γk and λk as

γk =
rT

k+1 · rk+1

rT
k · rk

λk =
rT

k · rk

uT
k · B · uk

(2.35)

The algorithm can now be written (taking x1 = 0)

k = 0
r1 = b

u1 = r1

x1 = 0
begin loop

k = k + 1
w = B · uk

λ = rT
k · rk/uT

k · w
xk+1 = xk + λuk

rk+1 = rk − λw

γ = rT
k+1 · rk+1/rT

k · rk

uk+1 = rk+1 + γuk

end loop

Note that there is only one matrix-vector multiply per iteration. M iterations of this process would give
the exact solution (in the absence of roundoff) but it is anticipated that much fewer than M iterations
will be required to get an acceptable solution.

The algorithm described above is the standard CG algorithm – Golub and Van Loan (Chapter 10)
1996 give an extensive discussion of the theory. This is not in the best form for numerical application
since it uses the ”normal” equations B ·x−b which, as we have already noted, can square the condition
number and introduce instability. We would like to go back to the rectangular system in equation 11.
Remember, even just forming B can turn a sparse A matrix into a dense B matrix though the sparseness
can be retained by computing B ·u as AT · (A ·u). An equivalent sparse square system can be written
down:

9

[
I A

AT 0

]
·
[
r
x

]
=

[
d
0

]
and used to develop algorithms which do not implicitly use the normal equations and which are stable
when systems are not well-conditioned (e.g. LSQR). We leave this as an exercise to the reader.

One final point: knowing when to stop iterative techniques can be a bit of an art form. Typically,
much of the misfit to the data is taken up in the first few iterations but convergence to a stable model
can take much longer. In particular, where we include a smoother (as in equation 21), it seems that the
effect of the smoother becomes more apparent at later iterations even though the fit to the data does not
change much. Several stopping criteria for LSQR have been suggested (see original papers by Paige
and Saunders) but it pays to be conservative and we typically use a criterion based on convergence of
the model vector (rather than some data misfit criterion).

7. Resolution and error analysis

In section 4, we discussed resolution and error and gave results in terms of the generalized inverse of
A (equations 15 and 16). How do we go about computing resolution and error when A+ is not available
(as when using an iterative technique). Some have suggested using a rough estimate of A+ (e.g. Nolet
et al,1999, GJI,v138,p36) using a one-step back projection which gives

A+ � ATΩΩΩ (2.36)

where ΩΩΩ is a diagonal matrix and

Ωkk =
(AAT)kk∑N
i=1(AAT)2ik

(2.37)

It is not clear to us how well this performs in practice but we are often only interested in the overall
nature of the resolution matrix and not precise values for its elements. Perhaps this is adequate for this.

One way of estimating the resolution matrix is to do an inversion where we set the m’th element of
the model vector x to one and all the others to zero – call this vector xm. Now, compute dm = Axm

and solve Ax = dm using exactly the same iterative algorithm as you used to get your true model. This
process computes a single row (and column) of the resolution matrix corresponding to the m’th model
element. The complete resolution matrix can be computed by performing M such inversions – one for
each model parameter. Clearly this is infeasible if we are talking about 50,000 model parameters but
we can focus on key areas of the model where we are particularly interested in the resolvability of a
particular structure.

A modification of the above process (which is sometimes called a ”spike test”) is to solve for some
pattern to test resolution over a broad region. A common choice is to use a checkerboard pattern in one of
the layers of the model. A synthetic data set is computed for this checkerboard model and then inverted
using exactly the same iterative algorithm used to get the real model. The recovered checkerboard can
indicate areas of problematic recovery in the layer being tested and can show leakage into adjacent
layers above and below. Some people also use complicated test structures (such as slabs) to see how
well recovered such structures are but I worry that this kind of test can cover up smearing – particularly
if the test structure is chosen to look like a structure recovered in the inversion.

The estimation of the covariance matrix of the model can also be problematic but usually we are
satisfied with the diagonal elements (the square roots of which are the standard deviations of the model
paramters). It turns out that the best way to estimate these is to add a noise vector to the data vector

10

d = d+e where the elements of e are randomly chosen from a normal distribution with a unit standard
deviation (remember, we divided all data by their errors initially). We then solve for a model using this
perturbed data vector in our iterative procedure. We repeat this process many times (100 say) and then
look at the standard deviations of the elements of the 100 models we have generated. Tests show that
this process produces an excellent estimate of the diagonal elements of the model covariance matrix.

We shall illustrate some of these techniques with an inversion of surface wave phase data.

11

