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What we will cover 1in this lecture

m Composition of Harth

m Short lived nuclides and differentiation of the
Earth

m Atmosphere and the initial volatile inventory
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Planet Formation in the Solar Nebula

The great temperature differences between the hot inner regions and the

cool outer regions of the nebula determined what kinds of condensates
were available to form planets.

Near Mercury’s orbit, metal started to condense. Moving outwards to Venus
and Earth, more rock condensed

Only beyond the frost line, which lay between the present-day orbits of
Mars and Jupiter, were temperatures low enough for hydrogen compounds
to condense into ices.

Rocks and metals condense,

Hydrogen componds, rocks,
hydrogen compounds stay vaporized

and metals condense




So, the outer solar system contained condensates of all kinds, and since ice
was nearly three times more abundant, ice dominated the mixture.
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Estimating Earth composition

Assume earth has a bulk major element and

refractory element composition similar to that
of CI chondrites

-- does not predict abundances of moderately
volatile and volatile species

Simply assuming that all elements are present in
chondritic proportions will lead to erroneous

results



Earth composition
Meteorites — the building blocks

Meteorite classification

Meteorites

Differentiated meteroritis/ \Unifferentiated (primitive) meteorites

I[rons Stony-irons Achondrites Chondrites

Cores of Core-mantle  crust and
planetesimals  boundary mantle from
differentiated

planetesimals

l

SNC (Martian meteorites)
Shergottites

Nakhlites

Chassignites




Meteorites — the building blocks

Primitive meteorites
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So CI chondrites are good starting point for inferring the composition of
the Earth (at least for the non-volatile species)



Fingerprinting the building blocks with oxygen
isotopes
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FIG. 1. Oxygen isotope systematics for chondrites and the Earth-Moon system. The terrestrial fractionation line and the mixing line of Allende
components are also shown. The insert shaws an enlarged region for differentiated meteorites such as EHD (eucrites, howardites, diogenites) and
SNC (shergottites, nakhlites, chassignites), which plot parallel to the terrestrial fractionation line. All data are from Clayton and co-workers (e.g.,
Clayton 1993, Clayton et al. 1991, Clayton and Mayeda 1983, 1984, 1996 and references therein).

Only the enstatite chondrites have oxygen isotope composition that falls on the

terrestrial fractionation line
Or make the Earth by mixing chondrites that plot above and below the fractionantion

line = not much lie above the line though.....
Or the Earth was made of material that does not exist anymore



Bulk composition of the Earth

e Earth fractionation line
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Bulk composition of the Earth

Fig. 3. (Al/Mg) vs. (Fe/Mg) ratios for a suite of chondrites
(references and symbols are the same as in Fig. 2). We deduced
the (Fe /Mg)ge value from the linear array based on (Al/Mg)ge
= (0.095.




Estimating Earth Composition
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Elemental abundance versus 50% condensation temperature (Wood et al., 2006)

Relative to volatility trend, some elements are grossly depleted in silicate portion of
the earth



Temperature _
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Chondrules -> 4564.7+0.6 Ma (Amelin et al., 2002)

Eucrites (achondrites) ~4560 Ma
So the Earth must also have formed within a few (ten) million years after

the start of the solar system



Extinct radionuclides and early Earth history

(182Hf - 182W, 146§m = 142Nd, 1291 > 129X e

Age equation for a long-lived radioactive element

Dr Dr Pr At
D B D | * D (" =1) P, is radioactive parent
S / today S /Jinitial S / today

D, is daughter produced from
radioactive decay of P,
D, is stable isotope of D, and

Measurable quantities

For an extinct radionuclide we have not produced by radioactive
decay
Dr _ Dr n Pr P, stable isotope of P,
o L is the decay constant
DS today DS initial DS initial

But P, does not exist anymore.....

DS today DS initial PS initial DS




Extinct radionuclides: 132Hf = 182\y/
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Hafnium —Tungsten ('*?Hf-182W) systematics; t,, =9 M.y
Hf 1s highly /lithophile, retains in the silicate portion of the Earth.
1S , Some enters core, some retains in the

silicate mantle.
So 1deal for tracking core formation
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182\V* Evolution due to decay of "®2Hf
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Fig. 2. Schematic showing the fractionation of Hf from W in the
early solar system.
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So what do the data look like?

Old chonditc Compared to primitive

value I{ref. 1)

meteorites, Earth’s mantle

Karoonda
sy , has an excess of 132W. Core
Nogoya : melation mU.St haVe
Ceg#g:ggt?;us Cold Bokkeveld : happened When 182Hf was
Murchi i ! . .
e st1ll alive.
Orgueil
Alende { Mean time of core formation
was 11 Myr and core-
: | jiGDL-GD —A— .
| e = Torrestria formation was completed
e | samples . .
- within 30 Myr

Moon forming impact at ~30
Myr (Yin et al 2002; Jacobsen
Kleine et al. 2002, Yin et al. 2002 UR)

g 1s the deviation of a sample from

a reference or standards in parts per 10,000
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Mean time of core formation was 11 Myr and core-formation was completed
within 30 Myr

Moon forming impact at ~30 Myr (Yin et al 2002; Jacobsen 2005)



Samarium —Neodymium (“Sm-'4>Nd) systematics; t,, =103 M.y
Both Sm and Nd are /ithophile. Both are incompatible. However Nd 1s
more incompatible than Sm. So 1deal for tracking crust-mantle

differentiation.
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The early differentiation of the Earth’s

mantle: evidence from “2Nd
196Sm > 142Nd; tl,2 103 My.
147Sm > 143Nd: t,,, = 109 Gy

MORBs [
Carbonatites L

EHRESTHIAL Early crust-mantle differentiation; ~30
SAMPLES

Kimberites Myr after start of the solar system.

CHONDRITES
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£142Nd Boyet and Carlson (2005)




Boyet and Carlson (2005) attributed the '**Nd difference due to
formation of an early enriched layer (at ~ 30 Myr) that
subsequently sank back into the mantle; this hidden layer 1s not

sampled today at either mid ocean ridge volcanism or ocean island
volcanism.

EARTH BEFORE 30 MILLION YEARS EARTH TODAY

The enriched layer would be enriched in heat producing radioactive
elements



But what we one assumes that the different stellar
components were not well mixed in the solar system?

Is 1t possible that because of incomplete mixing of r- and
s- process components Earth and meteorites had different
starting '**Nd/!*Nd values?

Meteorite Parent
Bodies

142Nd/1441\]d)0’a (142Nd/144Nd)0’b

To test this idea one needs to find another heavy element having isotopes produced

by both the r- and s-process but not having any significant contribution from



Barium —> isotopes are not affected by radioactive

decay

Chondrite Ba Normalized to Earth Ba Chondrites have an
0 ' ' ' ! ' excess of r-process
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The Ba isotopic
differences can only
be formed by
incomplete mixing of
stellar components
between the Earth
and Meteorite parent
bodies
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Schematic results for Ba and Nd

(Ranen and Jacobsen, 2006)
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The results for Ba predict a negative “>Nd effect in chondrites
compared to Earth as observed = so did the Earth really undergo
an early episode of crustal differentiation?



Pu-I-Xe systematics
121 2 ¥Xe; t;,,=16My
244Pu > Xe; t,,, = 80My; 136Xe also produced from U fission
1/2 y P
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Kunz et al., 1998

If Xenon in the mantle is complimentary to the atmosphere, degassing of the mantle to
produce the atmosphere happens in 50-80Myr.
Alternatively, the atmosphere not formed through mantle degassing but rather came

from the late veneer.



What do we know about the
eatly atmosphere on Earth?

m [nventory established “early”
- Uncertainties beyond this
- (sources, mechanisms, precise timing)

m Hlemental abundances and isotopic composition
have been modified by atmospheric loss
processes



How could volatiles be incorporated into
planet Earth?

m Capture of nebular gases — atmosphere of solar
composition- dissolved into magma ocean

B Impact degassing — H,O (steam) rich atmosphere

® Delivery by cometesimals — late stage of

accretion



How could volatiles be incorporated into
planet Earth?

Capture of nebular gases
atmosphere of solar

composition dissolved into
magma ocean =2 dissolved
hydrogen could reduce Fe-

silicate to produce water (e.g., | 2 | | 3 7
Sasaki 1990). /3 <r-

Noble gases would have solar composition

Elemental abundances in the mantle will be set by the
atmospheric pressure and solubility in a magma



How could volatiles be incorporated into
planet Earth?

2. Impact degassing — H,O (steam)

rich atmosphere

O Formation of steam atmosphere
starts at ~0.01 M _,

m  Blanketing effect of the
atmosphere can raise surface

temperatures high enough for
melting

Noble gases would have the composition of the material
that made up the planet (i.e. isotopically not solar)



But the isotopes do not add up......

Mantle Data

& Primitive
meteorites

Figure from Pepin and Porcelli, 2002

Earth started off with a
solar composition

Maybe mixture of nebular
and planetary gases

Bottom line

Need solar composition gas
and need to get it into the
deep mantle in high abundance

—> magma ocean is a

logical way to ingas the planet
(e.g., Hayashi et al., 1979;
Jacobsen and Harper, 1996)



Noble gases in the atmosphere
of terrestrial planets
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Krypton and Xenon in the atmosphere
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>90% of the Xenon in the atmosphere was lost in the first 60-80 Myr
The Earth’s atmosphere has preferentially lost the lighter isotopes >

loss mechanism has to explain this
Pepin and Porcelli, 2002




What processes can strip the early
atmosphere on Earth

m Hydrodynamic escape
Extreme UV radiation from sun heats a H-rich
atmosphere
H escape fluxes can be large enough to exert
upward drag forces on heavier atmospheric
constituents
Lighter isotopes will be preferentially lost

May need unrealistically large EUV flux (500 times larger than
present day and may need this for 50 Myrs)

It significant CO, or CO present in the atmosphere H, escape flux
will be limited by H, diffusion through CO,

(Hunten et al., 1987; Pepin, 1991; Zahnle and Kasting, 1986)



What processes can strip the early
atmosphere on Earth

Moon forming giant impact ~30 Myr
after the start of the solar system (Yin et

al., 2002)
leads to bulk erosion of the atmosphere

not capable of fractionating specles
in the atmosphere

Based on radiogenic Xenon,
30 Myr maybe too eatly for atmospheric
loss....
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