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What I will not cover.....

U-Th-Pb sytematics

28U, ¢,,,=4.5 Ga

235U, t,,=0.7 Ga

232Th, ¢, ,=14 Ga

More on this system in the next lecture by Stan............



Rb-Sr and Sm-Nd systematics
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P. is radioactive parent

D, is daughter produced from
radioactive decay of P,

D, is stable isotope of D, and
not produced by radioactive
decay

A is the decay constant

(" ~1)

« Stable non-radiogenic reference isotope for Nd is '#4Nd.
« Stable non-radiogenic reference isotope for Sr is 8Sr



The € notation for Sm-Nd

CHUR stands for chondritic uniform reservoir, and represents the
evolution of a bulk solar system Sm/Nd ratio and initial '*Nd/!**Nd.



Samarium —Neodymium ('4’Sm-!*Nd; t, , = 106 G.y) and
Rubidium-Strontium systematics(®’Rb-%/Sr; t, , = 48.8 G.y)
Sm, Nd, Rb, and Sr are /ithophile and incompatible.
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Rb-Sr system: The tree of life
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Isotopic differences between OIBs and MORBs
An 1ssue of sampling lengthscales?
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continental crust  j=3

depleted mantle j=2

primitive or j=4
enriched mantle

continental crust (j=3)
depleted mantle (j=2)

---------

Equations derived in
Kellogg et al., 2002

Also see DePaolo 1983
and Jacobsen 1988
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M is the mass transport
dN,(1) C 1s the concentration
d¢ R is radioactive parent
D is the stable daughter isotope
3500ty C()= M) Co()| =2, Ny (1) Produced by radioactive decay
= S indicates stable reference isotope
D 1 the decay constant

= Y [Myj(t)d Car (1) — M (1)dgjtc Ci(2)] + A+ Ny (2)



continental crust  j=3

depleted mantle j=2

primitive or j=4
enriched mantle

continental crust (j=3)
depleted mantle (j=2)

---------

Equations derived in
Kellogg et al., 2002

Also see DePaolo 1983
and Jacobsen 1988



Stirring effect
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Real MORB
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He 1sotope geochemistry

« Two isotopes of helium: *He and “He
SHe is primordial
“He produced by radioactive decay of U and Th

« Helium behaves as an incompatible element during mantle
melting (i.e. prefers melt over minerals)

* Helium expected to be more incompatible than U and Th
during mantle melting

* Helium not recycled back into the mantle

If so high ’He/*He ratios reflect less degassed mantle material
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Histogram of He isotope ratios in mid-ocean ridge basalts (MORBSs)

SHe/*He ratios reported relative to the
atmospheric ratio of 1.39 x 10

No relation between isotopic
composition and spreading rate but
the variance 1s inversely related to

spreading rate

Either reflects
- efficiency of mixing in the upper

mantle
- differences 1n degree of magma

homogenization
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Comparison of He 1sotope ratios from selected MORs, OIBs,
and continental hotspots

The mean *He/*He ratio
from different ridge
segments are nearly
identical although the
variance 1s different

OIBs are much more
variable

SHe/*He ratios less than
MORBSs are frequently
associated with radiogenic
Pb (HIMU) and reflects
recycled components in the
mantle
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He 1sotope ratios in ocean island basalts (OIBs)

OIBs display a very large range ir
He 1sotopic composition

He 1sotopic distribution has a
double-peak; maxima at 8 R, and

13R,

The first maxima is identical to

the mean from MORBs
- Clear indication of the

involvement of depleted mantle in

ocean 1sland volcanism

MORBSs: sample well-mixed degassed mantle with low *He/U+Th
OIBs: sample heterogeneous, less degassed mantle with
high SHe/U+Th
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Geochemistry of Ne

Neon has three isotopes ?’Ne, ?!Ne, and ’Ne
2ONe is primordial
2INe is produced by nucleogenic reactions in the mantle:
— 180(a, n)*'Ne and **Mg(n, a)*'Ne
— o from U decay; neutrons from spontaneous fission Production
ratio of 2'Ne/*He is ~10~7
2?Ne is primordial. There may be a small nucleogenic production
of 22Ne, ['F(a, n)?*Ne] but it is likely to be negligible
20Ne/??Ne does not vary in the mantle derived rocks; 2'Ne/??Ne
does
Ne 1s expected to be more incompatible than U and Th
during mantle melting => low ?!'Ne/??Ne ratios reflect less
degassed mantle material



Ne 1sotopic composition of mantle derived rocks
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Mantle 2°Ne/?’Ne ratio is fixed; 2!Ne/??Ne varies because of radiogenic ingrowth and
varying degrees of degassing

Different ocean islands have distinct 2'Ne/>’Ne ratios; either reflects varying
amounts of MORB mantle addition to the OIB source(s) or different parts of the
mantle have been degassed and processed to different degrees



R/R,
4030 20 108 6 4

East Pacific Rise
Juan de Fuca
Central Indian and Carlsberg Ridges
South West Indian Ridge
North Atlantic
South Atlantic
Yellowstone & Columbia River Continental
Alar
Cameroon line continental HIMU
Cameroon line oceanic
St Helena, Mangaia and Tubuai
Reunion Oceanic
Samoa
Galapagos
leeland
Hawaii

After Barford, 1999



Iceland line o |
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Red data
points are from Australs (HIMU)
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Geochemistry of Ar

Three stable isotopes of Ar, 3°Ar, 38Ar, 9Ar

36Ar and *8Ar are primordial
40Ar produced by radioactive decay of 4°K

Ar is expected to be more incompatible than K during
mantle melting

If so high “°Ar/3¢Ar reflects degassed mantle material



Geochemistry of Ar
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Geochemistry of Ar
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MORB mantle “°Ar/3°Ar values are ~ 40,000
OIBs have lower “°Ar/3°Ar ratios; reasonable limit is 8000

A value of 8000 does not represent pristine mantle material; must

indicate some processing, although significantly less degassed than the
mantle source sampled by MORBs



The picture that emerges so far......

1. MORBSs are more homogenous compared to OIBs

2.  Many OIBs sample a mantle source that 1s significantly less
degassed than the mantle source tapped by MORBs



Evidence for undegassed reservoir: The missing Argon
problem

K content of Earth derived from the K/U ratio of 12700 in MORBs
and U content of 20-22.5 ppb

Implied K content of bulk Earth 1s 250-285 ppm

Total 4°Ar produced over Earth history = 140-156 x 1018 g
40Ar in the atmosphere = 66 x 10'® g (~50%)

40Arin the crust =9-12x 1018 g

63-80 x 1018 of 49Ar has to be in the mantle



Evidence for undegassed reservoir: The missing Argon

Constraints from “°Ar flux

« “He flux at ridge =9.46 x 107 moles/yr

e “4He/*Ar ratio in MORBs 2-15

problem

ATMOSPHERE
M 40Ar = 66x10'8gr

=> YAr flux 0.63-5 x 107 moles/yr ‘

through ridges = 5.76 x 107 g/yr

If MORB mantle representative of
entire mantle and if lithosphere

mantle 1.4-1.8 10'8g

. q- . F4°Ar=5x107-0.6x107mol/y
* Mass of oceanic lithosphere passing =

-

s 141E g
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Lower than the 63-81 x 10'8g estimated | i . ap0eom 0 &

(Allegre et al., 1996) and requires a

hidden reservoir for 4°Ar

K = 220ppm

Allegre et al., 1996
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If MORB mantle extends to 670 km, 0.6-4.6 x 108 g of °Ar in upper mantle
and 59 x 10!8g of “°Ar in the lower mantle, corresponding to a K concentration
of about 230ppm; consistent with K content of bulk Earth
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Relationship between He and other lithophile tracers
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RelatlonShip between He HSDP2 Mauna Kea only B7S1/865T — Less depleted

More depleted <+——

and Other llthOphlle tracers 0,7034 0 0.?(::345 o.?c:aﬁo 0, 70255 o.?r;::aao 0.?(::365 0, 70370

—— |

« He 1sotopic variations are

strongly coupled to variations 2000
in other lithophile tracers (Sr, %
Nd, Pb) :
 Higher *He/*He ratios are -
associated with /ess depleted z

87Sr/%6Sr isotopic signal 2500 1 !

— high ’He/*He ratios are - -
5 10 15 20 23 30

indicative of less degassed 8- e | 3Py aTTe
mantle

Above data is from the 3 km deep drill hole
from Mauna Kea, Hawaii (Kurz et al., 2004)



Global relationship between He and other lithophile tracers:
The wormograms, hartworms, harttubes
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Lets look at Hawaii 1n a little more detail......

Island of Hawaii
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Nothing seems to be mixing with FOZO directly
Consistent with recent Samoa data (talk to Matt Jackson)



Global relationship between He and other lithophile tracers

Inferences:

« High 3He/*He ratios from a single, relatively undegassed mantle
source that 1s characterized by well defined Sr, Nd, and Pb isotopic
composition

« 3He/*He is one of the reasons to come up with a component
(PHEM, FOZO, C) that is internal to the other mantle end-
members in Sr, Nd, and Pb isotopic space (EM1, EM2 HIMU,
DM)

 FOZO has Sr, Nd, Pb 1sotopic composition that is slightly depleted
in comparison to primitive mantle; PHEM 1s primitive.



Noble Gas Concentrations
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Noble gas elemental ratios
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He more soluble in basaltic melt than Ne, which 1s more soluble than Ar
=> With increasing degassing He/Ne ratios increase and Ne/Ar ratios
increase

Solubility controlled degassing does not explain the differences in gas
concentration between MORBs and OIBs.



Solubility as a function of H,0-CO,
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Summary statements

 From ’He/*He, 2!Ne/??Ne, and 4°Ar/3°Ar ratios we know there exists
a relatively undegassed reservoir in the Earth that is tapped at many
ocean 1slands; MORBs sample a more degassed and processed
mantle source.

* An reservoir that 1s less degassed than the MORB source is
supported by “°Ar

« Based on correlations between *He/*He ratios and other isotopic
tracers (Sr, Nd, Pb), the undegassed reservoir has a composition

depleted relative to primitive mantle; the depletion 1s consistent with
the inferred 4°Ar/3%Ar ratio of ~8000 for the OIB source
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