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Transition

Flowing (from Hermann)

Granular Material
A Granular Material is a collection of non-penetrating objects that dissipate 

energy upon contact and do not respond to thermal temperature.

Jammed (from 
Behringer)



  

One Possible Application:  Earthquakes
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Flows of Granular Materials

We conduct simulations of flowing granular materials, in 2 geometries:

“Simple Shear Flow” “Incline Flow”



Interaction Between Grains

A common paradigm for the granular interaction is simple restitution
resulting from perfectly hard grains:

v′n = −evn; v′
t = −tvt; Ft ≤ µFn

n

t
In most of this presentation we 

concentrate on frictionless materials.

This simple paradigm has been applied to many 
subjects, including:  avalanches, earthquakes, traffic 

flow, friction, and galaxy formation.



Constitutive Relations
In the geometries we study, we’re interested in the following variables

shear rateγ̇αβ = ∂αUβ =
(

0 γ̇
0 0

)

Σαβ =
∑

contacts

DαFβ =
(

p −σ
−σ p

)
pressure and 
shear stress

T =
∑

grains

v2 −




∑

grains

v


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2

granular temperature

γ̇For perfectly hard grains, the only independent time scale is set by
Thus,

p, |σ|, T ∝ γ̇2

(Observed experimentally in 1954 by Bagnold)





Some Simple Shear Results
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Some Incline Flow Results
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Local Rheology
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How To Model Constitutive Relations

• Kinetic Theory
  Assume no microscopic structure.

• STZ Theory
  Assume a certain type of microscopic structure.



Overview of Kinetic Theory for 
Granular Materials

Kinetic Theory assumes that particles interact only through binary collisions.
This yields an equation for the one-particle distribution function f

(∂t + vα∂α)f(v) =
∫

dv1dv2 b(e, v1, v2, v) f(v1)f(v2)

The stress tensor is determined, once f is known

Σbc
αβ = J(f)

Is the binary collision assumption applicable to granular materials?



e=0.92:  nearly elastic e=0:  totally inelastic

Emergence of Clusters



Test of the Binary Collision Assumption

The total stress tensor is 
measured as

If only binary collisions occur, 
then this can be written as

Σαβ =
∑

contacts

DαFβ

Σbc
αβ =

1 + e

∆t

∑

contacts

µDαvrel
β
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When does KT apply?
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Microscopic Failure of KT
Kinetic Theory breaks down because of the emergence of clusters of grains.  
Can we measure this?

We measure force-force spatial correlations to find the average cluster size
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Growth of Average Cluster Size
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The growth of cluster size mirrors the growth of the pressure and shear stress 
ratios and signals the breakdown of Kinetic Theory.



How To Model Constitutive Relations

• Kinetic Theory
  Assume no microscopic structure.
  Breaks down with the appearance of correlated clusters.
  Not a good theory for geological situations.
  cond-mat/0507286

• STZ Theory
  Assume a certain type of microscopic structure.



STZ Theory of Amorphous Solids

(1)  Non-affine motion occurs in localized regions
(2)  The regions undergoing non-affine motion have orientation

− +

R±

ṅ± = R∓n∓ J R±n± + w(a J bn±)
γ̇pl / R  n  . R+n+

(Falk & Langer 1997)



  

Validation of Microscopic Picture
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STZ Theory for Granular Materials

ṅ± = R∓n∓ J R±n± + w(a J bn±)
γ̇pl / R  n  . R+n+

(Falk & Langer 1997)

w = σγ̇/pγ̇ = γ̇pl

Lemaitre (2002)

R ± (
)

T e ±κσ/p

γ̇ ∝
√

T (Λ sinh(κσ/p) − ∆ cosh(κσ/p))

∆̇ ∝ γ̇ (1 − ∆ζσ/p)
Λ̇ ∝ γ̇σ/p (1 − Λ)



Test of STZ Flowing Steady State
γ̇√
T

∝ sinh(κ
σ

p
) − p

ζσ
cosh(κ

σ

p
)
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How To Model Constitutive Relations

• Kinetic Theory
  Assume no microscopic structure.

• STZ Theory
  Assume a certain type of microscopic structure.
  Works well if the structure exists-- dense granular flows.
  cond-mat/0501535 (or come see my poster)



Where Do We Go From Here?

σ, p, T, γ̇

σ/p, γ̇〈R〉/
√

T , mT/p〈R〉2
Given there are 3 invariant quantities

To determine these quantities requires 3 relations in steady state.  In the 
dense regime where Kinetic Theory does not apply,  
     One relation is furnished by STZ Theory.
     One relation can be determined through energy balance.
     One more relation must be discovered.


