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Understanding the collective behavior of microbial communities

food particles can serve as platforms for attachment of bacterial
taxa (including potential syntrophic partners). Crypts were colo-
nized by a sparse, taxonomically mixed community (Fig. 3D),
suggesting that they were colonized from the lumen and did not

serve as microhabitats for any select groups within the 15-member
model human gut microbiota.
The overall composition of the microbial community differed only

modestly from microhabitat to microhabitat within a cross-section
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Fig. 3. Colonization patterns in distinct microhabitats in the colon. Tiled images show the distribution of microbes relative to host tissue and large autofluorescent
food particles. Images shown are representative of the region proximal to the epithelium (A andB), the region distal to the epithelium (lumen;C), and crypts (D). White
boxes show the positions of higher magnification views (Lower) where individual bacterial cells are visible; low-magnification image in C shows the image location in
the lumen. Microbes were spatially mixed at micrometer scales in all microhabitats. Legend in A also applies to C. Scale bars in D apply throughout the figure.
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E.g., in situ microscopy of a (mouse) gut microbiome
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1. Structure & function emerge from many interacting parts (ecology)      

Challenges:
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( pathogens, lab expt’s:        ~ years, months, days )�t

Mutant Further mutant



Is short-term evolution important in the gut microbiome?
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Problem: little empirical data. Many basic questions still not known. 
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Problem: little empirical data. Many basic questions still not known. 

• What are relevant timescales for within-host evolution? Does it happen at all?
• What do population genetics of this process look like? 

• How important are genetic drift, horizontal gene transfer, immigration?
• Genetic structure of typical resident population?
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Host 1

�t

Host ~100

~6mo

… 

Host 2

First pass: what can we learn from a large healthy cohort?

Samples: Human Microbiome Project

Nandita Garud 
(UCLA)

K. Pollard 
(UCSF)

O. Hallatschek 
(UC Berkeley)*

joint 
work 
with



Person 2 Person n

t0

Between-host
evolution

…

t0

Within-host evolution /
strain replacement

t1

Multiple timescales

First pass: what can we learn from a large healthy cohort?
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Migration

mutation, selection, 
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Initial 
colonization

Present-day 
sample

Across-host dynamics 
mutation, selection,  

recombination, genetic drift,… Purple species reference genome
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E.g., “T  A” mutation
@ 60% frequency

in this species  
in this sample    GTTTTATTTTGGTGTTGATG

       TTATTTTGGTGTTGATGTAC

  CAGTTTTATTATGGTGTTGA
   AGTTTTATTATGGTGTTGAT

        TATTATGGTGTTGATGTACA

What we can actually measure: frequencies of SNVs
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Upshot: must discard lots of data… 

but w/ ~100’s of hosts, can resolve 
genetic diffs btw ~1000’s of strains 
across ~40 prevalent species 
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requires denser longitudinal sampling



Next steps: dense time series data to infer dynamics of this process

Mike Snyder
(Stanford)

Microbial
Load

Figure S2: Microbiota density over time. Top: Microbiota density estimated by microbial
DNA quantification (concentration of extracted DNA per ⇠200mg feces) for a subset of the study
timepoints, labeled using the same color scheme as in Fig. 1. Vertical lines indicate ±20% error
bars, as estimated from the precision of our sample mass measurements. These data show that
overall microbiota density was not significantly reduced at the end of antibiotic treatment. Bottom:
Absolute species abundance dynamics obtained by scaling the relative abundance measurements in
Fig. 1C by the microbiota density measurements in the top panel.
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ABX 

Question: How is this species level resilience 
                 implemented at the strain level?

Persisted due to pre-existing ABX resistance?
Or evolved ABX resistance during treatment?

Re-colonization by new strain of same species?
or survivors of original strain?

Can we look “under the hood” to find out?

Add’l selection pressures unmasked 
during transient recovery phase?



Next steps: dense time series data to infer dynamics of this process

Microbial
Load

Figure S2: Microbiota density over time. Top: Microbiota density estimated by microbial
DNA quantification (concentration of extracted DNA per ⇠200mg feces) for a subset of the study
timepoints, labeled using the same color scheme as in Fig. 1. Vertical lines indicate ±20% error
bars, as estimated from the precision of our sample mass measurements. These data show that
overall microbiota density was not significantly reduced at the end of antibiotic treatment. Bottom:
Absolute species abundance dynamics obtained by scaling the relative abundance measurements in
Fig. 1C by the microbiota density measurements in the top panel.
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Figure S2: Microbiota density over time. Top: Microbiota density estimated by microbial
DNA quantification (concentration of extracted DNA per ⇠200mg feces) for a subset of the study
timepoints, labeled using the same color scheme as in Fig. 1. Vertical lines indicate ±20% error
bars, as estimated from the precision of our sample mass measurements. These data show that
overall microbiota density was not significantly reduced at the end of antibiotic treatment. Bottom:
Absolute species abundance dynamics obtained by scaling the relative abundance measurements in
Fig. 1C by the microbiota density measurements in the top panel.
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Figure S2: Microbiota density over time. Top: Microbiota density estimated by microbial
DNA quantification (concentration of extracted DNA per ⇠200mg feces) for a subset of the study
timepoints, labeled using the same color scheme as in Fig. 1. Vertical lines indicate ±20% error
bars, as estimated from the precision of our sample mass measurements. These data show that
overall microbiota density was not significantly reduced at the end of antibiotic treatment. Bottom:
Absolute species abundance dynamics obtained by scaling the relative abundance measurements in
Fig. 1C by the microbiota density measurements in the top panel.
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Next steps: dense time series data to infer dynamics of this process
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Figure S2: Microbiota density over time. Top: Microbiota density estimated by microbial
DNA quantification (concentration of extracted DNA per ⇠200mg feces) for a subset of the study
timepoints, labeled using the same color scheme as in Fig. 1. Vertical lines indicate ±20% error
bars, as estimated from the precision of our sample mass measurements. These data show that
overall microbiota density was not significantly reduced at the end of antibiotic treatment. Bottom:
Absolute species abundance dynamics obtained by scaling the relative abundance measurements in
Fig. 1C by the microbiota density measurements in the top panel.
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Next steps: dense time series data to infer dynamics of this process
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Figure S2: Microbiota density over time. Top: Microbiota density estimated by microbial
DNA quantification (concentration of extracted DNA per ⇠200mg feces) for a subset of the study
timepoints, labeled using the same color scheme as in Fig. 1. Vertical lines indicate ±20% error
bars, as estimated from the precision of our sample mass measurements. These data show that
overall microbiota density was not significantly reduced at the end of antibiotic treatment. Bottom:
Absolute species abundance dynamics obtained by scaling the relative abundance measurements in
Fig. 1C by the microbiota density measurements in the top panel.
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bars, as estimated from the precision of our sample mass measurements. These data show that
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Figure S2: Microbiota density over time. Top: Microbiota density estimated by microbial
DNA quantification (concentration of extracted DNA per ⇠200mg feces) for a subset of the study
timepoints, labeled using the same color scheme as in Fig. 1. Vertical lines indicate ±20% error
bars, as estimated from the precision of our sample mass measurements. These data show that
overall microbiota density was not significantly reduced at the end of antibiotic treatment. Bottom:
Absolute species abundance dynamics obtained by scaling the relative abundance measurements in
Fig. 1C by the microbiota density measurements in the top panel.
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These trends are recapitulated across ~35 species in the community

Figure 2: Varied ecological and genetic responses across 36 abundant species in the same host. (a)
The relative abundances of species through time, partitioned according to the epochs in Fig. 1A. Each timepoint is
indicated by a point, and the timepoints from the same epoch are connected by a vertical line to aid in visualization.
For comparison, the grey distribution shows the corresponding values from the Human Microbiome Project cohort.
Species whose relative abundance drops by more than 10-fold between baseline and antibiotic timepoints are indicated
with a single star. Only a minority of the most abundant species experience such reductions in relative abundance
during treatment. (b) Within-species nucleotide diversity for each timepoint, as measured by the fraction of core
genome sites with intermediate allele frequencies (0.2  f  0.8). Points are plotted according to the same scheme as
in (a). (c) The total number of single nucleotide (SNV) di↵erences between a baseline timepoint and each of the later
epochs (Supplemental Methods). The height of the white area indicates the total number of polymorphic SNVs that
were tested for temporal variation. Di↵erent species display a range of di↵erent behaviors, which can be partitioned
into putative cases of competition between distantly related strains, and evolution of a single dominant strain. (d)
Initial frequencies of alleles identified in (c). If there are more than 10 SNV di↵erences, the data are summarized by
the median initial frequency (square symbol) and the interquartile range (line). Many alleles have nonzero frequency
before the sweep occurs. (e) The fraction of SNV di↵erences in (c) that are retained at the final timepoint (f � 0.7).
In many species, only a minority of SNV di↵erences gained during disease or antibiotic treatment are retained are
retained.

2

SNV differences between baseline & ABX
baseline & final baseline & disease

Pre-existing
Variants

Frequent
reversion



Next steps: dense time series data to infer dynamics of this process

Microbial
Load

Figure S2: Microbiota density over time. Top: Microbiota density estimated by microbial
DNA quantification (concentration of extracted DNA per ⇠200mg feces) for a subset of the study
timepoints, labeled using the same color scheme as in Fig. 1. Vertical lines indicate ±20% error
bars, as estimated from the precision of our sample mass measurements. These data show that
overall microbiota density was not significantly reduced at the end of antibiotic treatment. Bottom:
Absolute species abundance dynamics obtained by scaling the relative abundance measurements in
Fig. 1C by the microbiota density measurements in the top panel.
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in the LTEE. Figure 3b shows that nine of the twelve populations 
have clades that coexist for more than 10,000 generations, often per-
sisting through to generation 60,000. By partitioning the mutations 
into clades (Fig. 3a), we also see that fixations continue to accumulate 
within each clade, even when population-wide fixation events have  
ceased.

This striking separation of timescales between inter-clade and intra-
clade fixations cannot be explained by clonal interference26. Instead, 
long-term coexistence is likely to be maintained by negative frequency- 
dependent selection, as has been demonstrated in Ara−227,28. It is not 
known whether these additional examples of coexistence revealed by 
our data involve the same glucose/acetate cross-feeding interaction as 
was seen in Ara−2, or whether these populations have exploited other 
opportunities for ecological diversification.

Regardless of the mechanism of coexistence, the metagenomic data 
show that the balance between the two clades does not remain con-
stant over long timescales. Instead, their relative abundance can shift 
by at least an order of magnitude during their coexistence. The timing 
and magnitudes of these shifts vary from population to population; 
they could reflect ongoing selection on the mechanism of coexistence 
or a general coupling between the ecologically divergent phenotypes 
and ordinary fitness gains28–30. Further work is needed to distinguish 
between these scenarios.

Dynamics and fates of new mutations
Most models of molecular evolution do not account for frequency- 
dependent selection, which complicates efforts to understand the 
evolutionary dynamics using population-wide data. To overcome this 
problem, we focused on the dynamics within each clade.

First, using the clade-aware HMM, we estimated the appearance and 
fixation times of all mutations that fixed in basal or majority clades 
in the nonmutator populations (Supplementary Information 5.3.1). 
These are upper and lower bounds, respectively, as they exclude time 
outside the observable frequency range. From these measurements, 
we calculated the number of fixed mutations in the basal or majority 
clade through time (Fig. 4a). These data show that within-clade fixa-
tions continue at a steady pace, consistent with the Mp(t) trajectories in  
Fig. 2b. Although the average rate of fixations declines only modestly 
during the experiment, there is noticeable temporal variability as muta-
tions often fix in cohorts of multiple linked mutations. These cohorts 

have been observed previously1,29 and are expected in models of clonal 
interference31,32. However, they could also reflect transiently stable  
frequency-dependent interactions, as previously observed in Ara−129.

The difference between the appearance and fixation times of each 
successful mutation (the transit time) is a proxy for the strength of 
selection acting on a lineage. Despite the declining rate of fitness gain 
(Fig. 2a), we observe a broad distribution of transit times throughout 
the experiment (Fig. 4b). Even after 50,000 generations, some muta-
tions appear to fix nearly as rapidly as those that occurred in the first 
5,000 generations of evolution. This observation suggests that fitness 
differences between cohorts of mutations can remain high, with selec-
tion coefficients s > 2log|1 − ∆f|/∆t ∼1%, even after many beneficial 
mutations have fixed.
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Figure 3 | Long-term coexistence of competing clades. a, Output of 
the clade-aware HMM for population Ara−6. Major and minor clades 
(solid black lines) are defined by the clade frequencies at the final time 
point, and the basal clade contains mutations shared by major and minor 

clades. Coloured lines indicate mutations within the corresponding clade 
in each panel; all other mutations are shown in grey. b, Estimated clade 
frequencies for all twelve populations (major clade in purple, minor clade 
in pink). Individual mutations are shown in grey.
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Figure 4 | Evolutionary dynamics within clades. a, Number of mutations 
fixed within the basal or major clade through time in the nonmutator 
populations. Colours are the same as in Fig. 2, and the ensemble average 
is in white. b, The transit time of each mutation in a as a function of its 
appearance time. White line shows the median across the six populations 
in non-overlapping five-percentile windows, and the interquartile range 
of each window is in grey. c, Fixation probability as a function of current 
mutation frequency within its parent clade, along with expectations under 
quasi-neutral and hitchhiking models. Fixation probabilities are estimated 
using sliding frequency windows (Supplementary Information 5.3.2). 
d, Pooled version of c for mutator and nonmutator populations. Lighter 
lines include only time points from generation 20,000 onwards.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Like 
Lenski’s 
LTEE?

?

Good*, McDonald* et al (Nature, 2017)

x



Layton Rosenfeld 
Undergrad BioX Fellow

Global 
pop’n

Time
Host 2

Host 1

Separate 
ecological  
“niches”?

? …

vs

Next steps: does evolution alter ecological structure of gut microbiota?
ARTICLE RESEARCH

2  N O V E M B E R  2 0 1 7  |  V O L  5 5 1  |  N A T U R E  |  4 7

in the LTEE. Figure 3b shows that nine of the twelve populations 
have clades that coexist for more than 10,000 generations, often per-
sisting through to generation 60,000. By partitioning the mutations 
into clades (Fig. 3a), we also see that fixations continue to accumulate 
within each clade, even when population-wide fixation events have  
ceased.

This striking separation of timescales between inter-clade and intra-
clade fixations cannot be explained by clonal interference26. Instead, 
long-term coexistence is likely to be maintained by negative frequency- 
dependent selection, as has been demonstrated in Ara−227,28. It is not 
known whether these additional examples of coexistence revealed by 
our data involve the same glucose/acetate cross-feeding interaction as 
was seen in Ara−2, or whether these populations have exploited other 
opportunities for ecological diversification.

Regardless of the mechanism of coexistence, the metagenomic data 
show that the balance between the two clades does not remain con-
stant over long timescales. Instead, their relative abundance can shift 
by at least an order of magnitude during their coexistence. The timing 
and magnitudes of these shifts vary from population to population; 
they could reflect ongoing selection on the mechanism of coexistence 
or a general coupling between the ecologically divergent phenotypes 
and ordinary fitness gains28–30. Further work is needed to distinguish 
between these scenarios.

Dynamics and fates of new mutations
Most models of molecular evolution do not account for frequency- 
dependent selection, which complicates efforts to understand the 
evolutionary dynamics using population-wide data. To overcome this 
problem, we focused on the dynamics within each clade.

First, using the clade-aware HMM, we estimated the appearance and 
fixation times of all mutations that fixed in basal or majority clades 
in the nonmutator populations (Supplementary Information 5.3.1). 
These are upper and lower bounds, respectively, as they exclude time 
outside the observable frequency range. From these measurements, 
we calculated the number of fixed mutations in the basal or majority 
clade through time (Fig. 4a). These data show that within-clade fixa-
tions continue at a steady pace, consistent with the Mp(t) trajectories in  
Fig. 2b. Although the average rate of fixations declines only modestly 
during the experiment, there is noticeable temporal variability as muta-
tions often fix in cohorts of multiple linked mutations. These cohorts 

have been observed previously1,29 and are expected in models of clonal 
interference31,32. However, they could also reflect transiently stable  
frequency-dependent interactions, as previously observed in Ara−129.

The difference between the appearance and fixation times of each 
successful mutation (the transit time) is a proxy for the strength of 
selection acting on a lineage. Despite the declining rate of fitness gain 
(Fig. 2a), we observe a broad distribution of transit times throughout 
the experiment (Fig. 4b). Even after 50,000 generations, some muta-
tions appear to fix nearly as rapidly as those that occurred in the first 
5,000 generations of evolution. This observation suggests that fitness 
differences between cohorts of mutations can remain high, with selec-
tion coefficients s > 2log|1 − ∆f|/∆t ∼1%, even after many beneficial 
mutations have fixed.
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Figure 3 | Long-term coexistence of competing clades. a, Output of 
the clade-aware HMM for population Ara−6. Major and minor clades 
(solid black lines) are defined by the clade frequencies at the final time 
point, and the basal clade contains mutations shared by major and minor 

clades. Coloured lines indicate mutations within the corresponding clade 
in each panel; all other mutations are shown in grey. b, Estimated clade 
frequencies for all twelve populations (major clade in purple, minor clade 
in pink). Individual mutations are shown in grey.
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Figure 4 | Evolutionary dynamics within clades. a, Number of mutations 
fixed within the basal or major clade through time in the nonmutator 
populations. Colours are the same as in Fig. 2, and the ensemble average 
is in white. b, The transit time of each mutation in a as a function of its 
appearance time. White line shows the median across the six populations 
in non-overlapping five-percentile windows, and the interquartile range 
of each window is in grey. c, Fixation probability as a function of current 
mutation frequency within its parent clade, along with expectations under 
quasi-neutral and hitchhiking models. Fixation probabilities are estimated 
using sliding frequency windows (Supplementary Information 5.3.2). 
d, Pooled version of c for mutator and nonmutator populations. Lighter 
lines include only time points from generation 20,000 onwards.
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in the LTEE. Figure 3b shows that nine of the twelve populations 
have clades that coexist for more than 10,000 generations, often per-
sisting through to generation 60,000. By partitioning the mutations 
into clades (Fig. 3a), we also see that fixations continue to accumulate 
within each clade, even when population-wide fixation events have  
ceased.

This striking separation of timescales between inter-clade and intra-
clade fixations cannot be explained by clonal interference26. Instead, 
long-term coexistence is likely to be maintained by negative frequency- 
dependent selection, as has been demonstrated in Ara−227,28. It is not 
known whether these additional examples of coexistence revealed by 
our data involve the same glucose/acetate cross-feeding interaction as 
was seen in Ara−2, or whether these populations have exploited other 
opportunities for ecological diversification.

Regardless of the mechanism of coexistence, the metagenomic data 
show that the balance between the two clades does not remain con-
stant over long timescales. Instead, their relative abundance can shift 
by at least an order of magnitude during their coexistence. The timing 
and magnitudes of these shifts vary from population to population; 
they could reflect ongoing selection on the mechanism of coexistence 
or a general coupling between the ecologically divergent phenotypes 
and ordinary fitness gains28–30. Further work is needed to distinguish 
between these scenarios.

Dynamics and fates of new mutations
Most models of molecular evolution do not account for frequency- 
dependent selection, which complicates efforts to understand the 
evolutionary dynamics using population-wide data. To overcome this 
problem, we focused on the dynamics within each clade.

First, using the clade-aware HMM, we estimated the appearance and 
fixation times of all mutations that fixed in basal or majority clades 
in the nonmutator populations (Supplementary Information 5.3.1). 
These are upper and lower bounds, respectively, as they exclude time 
outside the observable frequency range. From these measurements, 
we calculated the number of fixed mutations in the basal or majority 
clade through time (Fig. 4a). These data show that within-clade fixa-
tions continue at a steady pace, consistent with the Mp(t) trajectories in  
Fig. 2b. Although the average rate of fixations declines only modestly 
during the experiment, there is noticeable temporal variability as muta-
tions often fix in cohorts of multiple linked mutations. These cohorts 

have been observed previously1,29 and are expected in models of clonal 
interference31,32. However, they could also reflect transiently stable  
frequency-dependent interactions, as previously observed in Ara−129.

The difference between the appearance and fixation times of each 
successful mutation (the transit time) is a proxy for the strength of 
selection acting on a lineage. Despite the declining rate of fitness gain 
(Fig. 2a), we observe a broad distribution of transit times throughout 
the experiment (Fig. 4b). Even after 50,000 generations, some muta-
tions appear to fix nearly as rapidly as those that occurred in the first 
5,000 generations of evolution. This observation suggests that fitness 
differences between cohorts of mutations can remain high, with selec-
tion coefficients s > 2log|1 − ∆f|/∆t ∼1%, even after many beneficial 
mutations have fixed.
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Figure 3 | Long-term coexistence of competing clades. a, Output of 
the clade-aware HMM for population Ara−6. Major and minor clades 
(solid black lines) are defined by the clade frequencies at the final time 
point, and the basal clade contains mutations shared by major and minor 

clades. Coloured lines indicate mutations within the corresponding clade 
in each panel; all other mutations are shown in grey. b, Estimated clade 
frequencies for all twelve populations (major clade in purple, minor clade 
in pink). Individual mutations are shown in grey.
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Figure 4 | Evolutionary dynamics within clades. a, Number of mutations 
fixed within the basal or major clade through time in the nonmutator 
populations. Colours are the same as in Fig. 2, and the ensemble average 
is in white. b, The transit time of each mutation in a as a function of its 
appearance time. White line shows the median across the six populations 
in non-overlapping five-percentile windows, and the interquartile range 
of each window is in grey. c, Fixation probability as a function of current 
mutation frequency within its parent clade, along with expectations under 
quasi-neutral and hitchhiking models. Fixation probabilities are estimated 
using sliding frequency windows (Supplementary Information 5.3.2). 
d, Pooled version of c for mutator and nonmutator populations. Lighter 
lines include only time points from generation 20,000 onwards.
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in the LTEE. Figure 3b shows that nine of the twelve populations 
have clades that coexist for more than 10,000 generations, often per-
sisting through to generation 60,000. By partitioning the mutations 
into clades (Fig. 3a), we also see that fixations continue to accumulate 
within each clade, even when population-wide fixation events have  
ceased.

This striking separation of timescales between inter-clade and intra-
clade fixations cannot be explained by clonal interference26. Instead, 
long-term coexistence is likely to be maintained by negative frequency- 
dependent selection, as has been demonstrated in Ara−227,28. It is not 
known whether these additional examples of coexistence revealed by 
our data involve the same glucose/acetate cross-feeding interaction as 
was seen in Ara−2, or whether these populations have exploited other 
opportunities for ecological diversification.

Regardless of the mechanism of coexistence, the metagenomic data 
show that the balance between the two clades does not remain con-
stant over long timescales. Instead, their relative abundance can shift 
by at least an order of magnitude during their coexistence. The timing 
and magnitudes of these shifts vary from population to population; 
they could reflect ongoing selection on the mechanism of coexistence 
or a general coupling between the ecologically divergent phenotypes 
and ordinary fitness gains28–30. Further work is needed to distinguish 
between these scenarios.

Dynamics and fates of new mutations
Most models of molecular evolution do not account for frequency- 
dependent selection, which complicates efforts to understand the 
evolutionary dynamics using population-wide data. To overcome this 
problem, we focused on the dynamics within each clade.

First, using the clade-aware HMM, we estimated the appearance and 
fixation times of all mutations that fixed in basal or majority clades 
in the nonmutator populations (Supplementary Information 5.3.1). 
These are upper and lower bounds, respectively, as they exclude time 
outside the observable frequency range. From these measurements, 
we calculated the number of fixed mutations in the basal or majority 
clade through time (Fig. 4a). These data show that within-clade fixa-
tions continue at a steady pace, consistent with the Mp(t) trajectories in  
Fig. 2b. Although the average rate of fixations declines only modestly 
during the experiment, there is noticeable temporal variability as muta-
tions often fix in cohorts of multiple linked mutations. These cohorts 

have been observed previously1,29 and are expected in models of clonal 
interference31,32. However, they could also reflect transiently stable  
frequency-dependent interactions, as previously observed in Ara−129.

The difference between the appearance and fixation times of each 
successful mutation (the transit time) is a proxy for the strength of 
selection acting on a lineage. Despite the declining rate of fitness gain 
(Fig. 2a), we observe a broad distribution of transit times throughout 
the experiment (Fig. 4b). Even after 50,000 generations, some muta-
tions appear to fix nearly as rapidly as those that occurred in the first 
5,000 generations of evolution. This observation suggests that fitness 
differences between cohorts of mutations can remain high, with selec-
tion coefficients s > 2log|1 − ∆f|/∆t ∼1%, even after many beneficial 
mutations have fixed.
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Figure 3 | Long-term coexistence of competing clades. a, Output of 
the clade-aware HMM for population Ara−6. Major and minor clades 
(solid black lines) are defined by the clade frequencies at the final time 
point, and the basal clade contains mutations shared by major and minor 

clades. Coloured lines indicate mutations within the corresponding clade 
in each panel; all other mutations are shown in grey. b, Estimated clade 
frequencies for all twelve populations (major clade in purple, minor clade 
in pink). Individual mutations are shown in grey.
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Figure 4 | Evolutionary dynamics within clades. a, Number of mutations 
fixed within the basal or major clade through time in the nonmutator 
populations. Colours are the same as in Fig. 2, and the ensemble average 
is in white. b, The transit time of each mutation in a as a function of its 
appearance time. White line shows the median across the six populations 
in non-overlapping five-percentile windows, and the interquartile range 
of each window is in grey. c, Fixation probability as a function of current 
mutation frequency within its parent clade, along with expectations under 
quasi-neutral and hitchhiking models. Fixation probabilities are estimated 
using sliding frequency windows (Supplementary Information 5.3.2). 
d, Pooled version of c for mutator and nonmutator populations. Lighter 
lines include only time points from generation 20,000 onwards.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Like 
Lenski’s 
LTEE?

?

Good*, McDonald* et al (Nature, 2017)

Challenge: a few known examples, but global impact difficult to 
quantify due to extensive heterogeneity (hosts, species, mut’s)

x

T0 T1

Compare 
ecological 
structure

T0 T1



Next steps: does evolution alter ecological structure of gut microbiota?

Global 
pop’n

Time
Host 2

Host 1

Layton Rosenfeld 
Undergrad BioX Fellow

T0 T1
(~6mo)

Example Host 1: 
2 replacement 

events w/in speciesx

T0 T1

Compare 
ecological 
structure

T0 T1



Next steps: does evolution alter ecological structure of gut microbiota?

Global 
pop’n

Time
Host 2

Host 1

Layton Rosenfeld 
Undergrad BioX Fellow

T0 T1
(~6mo)

Example Host 1: 
2 replacement 

events w/in species

Species w/  
replacements

x

T0 T1

Compare 
ecological 
structure

T0 T1



Next steps: does evolution alter ecological structure of gut microbiota?

Global 
pop’n

Time
Host 2

Host 1

Layton Rosenfeld 
Undergrad BioX Fellow

T0 T1
(~6mo)

Example Host 1: 
2 replacement 

events w/in species

Species w/  
replacements

Some  
species go
“extinct”

x

T0 T1

Compare 
ecological 
structure

T0 T1



Next steps: does evolution alter ecological structure of gut microbiota?

Global 
pop’n

Time
Host 2

Host 1

Others
“invade”

Layton Rosenfeld 
Undergrad BioX Fellow

T0 T1
(~6mo)

Example Host 1: 
2 replacement 

events w/in species

Species w/  
replacements

Some  
species go
“extinct”

x

T0 T1

Compare 
ecological 
structure

T0 T1



Next steps: does evolution alter ecological structure of gut microbiota?

Global 
pop’n

Time
Host 2

Host 1

Others
“invade”

Layton Rosenfeld 
Undergrad BioX Fellow

T0 T1
(~6mo)

Example Host 2: 
No genetic changes

w/in species

T0 T1
(~6mo)

Example Host 1: 
2 replacement 

events w/in species

Species w/  
replacements

Some  
species go
“extinct”

x

T0 T1

Compare 
ecological 
structure

T0 T1



Next steps: does evolution alter ecological structure of gut microbiota?

Global 
pop’n

Time
Host 2

Host 1

Stra
in

rep
lac

em
en

t

Δ
(c

om
m

un
ity

 s
tru

ct
ur

e)
 

Je
ns

en
-S

ha
nn

on
 d

is
ta

nc
e

Evo
lut

ion
ary

mod
ific

ati
on

No g
en

eti
c 

dif
fer

en
ce

s

**
**

Preliminary evidence that genetic changes w/in species are 
statistically associated w/ larger shifts in species composition

Layton Rosenfeld 
Undergrad BioX Fellow

Unre
lat

ed
Hos

ts

Permutation-based test
to assess significance

x

T0 T1

Compare 
ecological 
structure

T0 T1



Permutation tests to quantify eco-evolutionary correlations

Layton Rosenfeld 
Undergrad BioX Fellow

T0 T1

Host 2: Host n: 

T0 T1

Host 1: 

Species w/  
genetic  
changes

T0 T1

… 

Shuffle genetic 
events across 
(eligible) hosts

T0 T1

Host 2: Host n: 

T0 T1

Host 1: 

T0 T1

… 

O
bs

er
ve

d 
da

ta
Fa

ke
 d

at
a 
 

(n
ul

l m
od

el
)



Genetic turnover w/in species is associated with larger shifts  
in the species-level composition of the gut microbiota

Global 
pop’n

Time
Host 2

Host 1

But, changes in community structure not solely 
driven by frequency increases in focal species

Layton Rosenfeld 
Undergrad BioX Fellow

x

T0 T1

Compare 
ecological 
structure

T0 T1 Stra
in

rep
lac

em
en

t

Δ
(c

om
m

un
ity

 s
tru

ct
ur

e)
 

Je
ns

en
-S

ha
nn

on
 d

is
ta

nc
e

Evo
lut

ion
ary

mod
ific

ati
on

No g
en

eti
c 

dif
fer

en
ce

s

**
**

Unre
lat

ed
Hos

ts



Genetic turnover w/in species is associated with larger shifts  
in the species-level composition of the gut microbiota

Global 
pop’n

Time
Host 2

Host 1

But, changes in community structure not solely 
driven by frequency increases in focal species

Layton Rosenfeld 
Undergrad BioX Fellow

Δ
(c

om
m

un
ity

 s
tru

ct
ur

e)
 

Je
ns

en
-S

ha
nn

on
 d

is
ta

nc
e

Strain
replacement

Evolutionary
modification

No genetic 
differences

x

T0 T1

Compare 
ecological 
structure

T0 T1



Genetic turnover w/in species is associated with larger shifts  
in the species-level composition of the gut microbiota

Global 
pop’n

Time
Host 2

Host 1

But, changes in community structure not solely 
driven by frequency increases in focal species

Layton Rosenfeld 
Undergrad BioX Fellow

Δ
(c

om
m

un
ity

 s
tru

ct
ur

e)
 

Je
ns

en
-S

ha
nn

on
 d

is
ta

nc
e

Strain
replacement

Evolutionary
modification

No genetic 
differences

x

T0 T1

Compare 
ecological 
structure

T0 T1



Genetic turnover w/in species is associated with larger shifts  
in the species-level composition of the gut microbiota

Global 
pop’n

Time
Host 2

Host 1

Layton Rosenfeld 
Undergrad BioX Fellow

Δ
(c

om
m

un
ity

 s
tru

ct
ur

e)
 

Je
ns

en
-S

ha
nn

on
 d

is
ta

nc
e

Strain
replacement

Evolutionary
modification

No genetic 
differences

Phascolarctobacterium Similar to ABX  
timecourse

x

T0 T1

Compare 
ecological 
structure

T0 T1



Global 
pop’n

Time
Host 2

Host 1

Layton Rosenfeld 
Undergrad BioX Fellow

Strain
replacement

Evolutionary
modification

No genetic 
differences

Genetic turnover w/in species is associated with more frequent 
extinction events in other species (even if focal species declines )

Genetic turnover w/in species is associated with larger shifts  
in the species-level composition of the gut microbiota

x

T0 T1

Compare 
ecological 
structure

T0 T1



Global 
pop’n

Time
Host 2

Host 1

Layton Rosenfeld 
Undergrad BioX Fellow

Species w/  
evolutionary 
modification

Species
that go
extinct

T0 T1

Genetic turnover w/in species is associated with larger shifts  
in the species-level composition of the gut microbiota

Genetic turnover w/in species is associated with more frequent 
extinction events in other species (even if focal species declines )

x

T0 T1

Compare 
ecological 
structure

T0 T1



Next steps: does evolution alter ecological structure of gut microbiota?

Genetic turnover  
w/in species

Shifts in species 
composition ?

?

?

Environmental 
perturbation

Genetic turnover  
w/in species

Shifts in species 
composition

Genetic turnover  
w/in species

Shifts in species 
composition

Possible causal scenarios:



Next steps: does evolution alter ecological structure of gut microbiota?

Genetic turnover  
w/in species

Shifts in species 
composition ?

?

?

Environmental 
perturbation

Genetic turnover  
w/in species

Shifts in species 
composition

Genetic turnover  
w/in species

Shifts in species 
composition

Possible causal scenarios:

1. Replay experiments  
w/ synthetic communities



Next steps: does evolution alter ecological structure of gut microbiota?

Genetic turnover  
w/in species

Shifts in species 
composition ?

?

?

Environmental 
perturbation 2. Theory: do similar 

behaviors emerge in 
simple models where 

interactions are known?

Genetic turnover  
w/in species

Shifts in species 
composition

Genetic turnover  
w/in species

Shifts in species 
composition

Possible causal scenarios:

1. Replay experiments  
w/ synthetic communities



Some qualitative features can be recapitulated by simple resource 
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<latexit sha1_base64="wPrunWxx3yqYpBfbSnXTkdio5Eg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnRPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGKS5Qt</latexit>

Metabolites 
            (            )R�1

<latexit sha1_base64="g/KXlMR//J3uNE+jDw1403fdplg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnFPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGIwJQs</latexit>

ci
<latexit sha1_base64="mxGJvIO7r92rOVShbF16xk7KOvI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2wgBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHz7ejb0=</latexit>

fµ
<latexit sha1_base64="18in6388y7vS4Wm+covqxtOthIk=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBE8ld0q2GPBi8cKbltol5JNs21okl2SrFCW/gYvHhTx6g/y5r8xbfegrQ8GHu/NMDMvSgU31vO+0cbm1vbObmmvvH9weHRcOTltmyTTlAU0EYnuRsQwwRULLLeCdVPNiIwE60STu7nfeWLa8EQ92mnKQklGisecEuukIB70ZTaoVL2atwBeJ35BqlCgNah89YcJzSRTlgpiTM/3UhvmRFtOBZuV+5lhKaETMmI9RxWRzIT54tgZvnTKEMeJdqUsXqi/J3IijZnKyHVKYsdm1ZuL/3m9zMaNMOcqzSxTdLkozgS2CZ5/jodcM2rF1BFCNXe3YjommlDr8im7EPzVl9dJu17zr2v1h5tqs1HEUYJzuIAr8OEWmnAPLQiAAodneIU3pNALekcfy9YNVMycwR+gzx/S1I6p</latexit>

@t log fµ = ~rµ · ~c� �µ
<latexit sha1_base64="6VV1XTsCM4c8gdqStn6KSROTFDY="></latexit>

rµ,i
<latexit sha1_base64="vNencA/O3GlUegxoF2NVd79coYg=">AAAB8HicbZC7SgNBFIbPektMvEQt0wwGwULCbixMGbSxjGAukixhdjKbDJmZXWZmhbDkDexsLBSx9XHsfA1rCyeXQhN/GPj4/3OYc04Qc6aN6346a+sbm1uZ7HYuv7O7t184OGzqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyupnnrnirNInlrxjH1BR5IFjKCjbXuVC/tiuSMTXqFklt2Z0Kr4C2gVCt+XWbyD9/1XuGj249IIqg0hGOtO54bGz/FyjDC6STXTTSNMRnhAe1YlFhQ7aezgSfoxDp9FEbKPmnQzP3dkWKh9VgEtlJgM9TL2dT8L+skJqz6KZNxYqgk84/ChCMToen2qM8UJYaPLWCimJ0VkSFWmBh7o5w9gre88io0K2XvvFy58Uq1KsyVhSIcwyl4cAE1uIY6NICAgEd4hhdHOU/Oq/M2L11zFj1H8EfO+w8bRZOQ</latexit>
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competition models evolving in the high diversity limit
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<latexit sha1_base64="wPrunWxx3yqYpBfbSnXTkdio5Eg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnRPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGKS5Qt</latexit>

Metabolites 
            (            )R�1

<latexit sha1_base64="g/KXlMR//J3uNE+jDw1403fdplg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnFPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGIwJQs</latexit>
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communities

ci
<latexit sha1_base64="mxGJvIO7r92rOVShbF16xk7KOvI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2wgBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHz7ejb0=</latexit>

fµ
<latexit sha1_base64="18in6388y7vS4Wm+covqxtOthIk=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBE8ld0q2GPBi8cKbltol5JNs21okl2SrFCW/gYvHhTx6g/y5r8xbfegrQ8GHu/NMDMvSgU31vO+0cbm1vbObmmvvH9weHRcOTltmyTTlAU0EYnuRsQwwRULLLeCdVPNiIwE60STu7nfeWLa8EQ92mnKQklGisecEuukIB70ZTaoVL2atwBeJ35BqlCgNah89YcJzSRTlgpiTM/3UhvmRFtOBZuV+5lhKaETMmI9RxWRzIT54tgZvnTKEMeJdqUsXqi/J3IijZnKyHVKYsdm1ZuL/3m9zMaNMOcqzSxTdLkozgS2CZ5/jodcM2rF1BFCNXe3YjommlDr8im7EPzVl9dJu17zr2v1h5tqs1HEUYJzuIAr8OEWmnAPLQiAAodneIU3pNALekcfy9YNVMycwR+gzx/S1I6p</latexit>

@t log fµ = ~rµ · ~c� �µ
<latexit sha1_base64="6VV1XTsCM4c8gdqStn6KSROTFDY="></latexit>

rµ,i
<latexit sha1_base64="vNencA/O3GlUegxoF2NVd79coYg=">AAAB8HicbZC7SgNBFIbPektMvEQt0wwGwULCbixMGbSxjGAukixhdjKbDJmZXWZmhbDkDexsLBSx9XHsfA1rCyeXQhN/GPj4/3OYc04Qc6aN6346a+sbm1uZ7HYuv7O7t184OGzqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyupnnrnirNInlrxjH1BR5IFjKCjbXuVC/tiuSMTXqFklt2Z0Kr4C2gVCt+XWbyD9/1XuGj249IIqg0hGOtO54bGz/FyjDC6STXTTSNMRnhAe1YlFhQ7aezgSfoxDp9FEbKPmnQzP3dkWKh9VgEtlJgM9TL2dT8L+skJqz6KZNxYqgk84/ChCMToen2qM8UJYaPLWCimJ0VkSFWmBh7o5w9gre88io0K2XvvFy58Uq1KsyVhSIcwyl4cAE1uIY6NICAgEd4hhdHOU/Oq/M2L11zFj1H8EfO+w8bRZOQ</latexit>
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<latexit sha1_base64="wPrunWxx3yqYpBfbSnXTkdio5Eg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnRPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGKS5Qt</latexit>

Metabolites 
            (            )R�1

<latexit sha1_base64="g/KXlMR//J3uNE+jDw1403fdplg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnFPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGIwJQs</latexit>

Common 
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Community 
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1. Randomly assembled 
communities
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<latexit sha1_base64="mxGJvIO7r92rOVShbF16xk7KOvI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2wgBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHz7ejb0=</latexit>

fµ
<latexit sha1_base64="18in6388y7vS4Wm+covqxtOthIk=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBE8ld0q2GPBi8cKbltol5JNs21okl2SrFCW/gYvHhTx6g/y5r8xbfegrQ8GHu/NMDMvSgU31vO+0cbm1vbObmmvvH9weHRcOTltmyTTlAU0EYnuRsQwwRULLLeCdVPNiIwE60STu7nfeWLa8EQ92mnKQklGisecEuukIB70ZTaoVL2atwBeJ35BqlCgNah89YcJzSRTlgpiTM/3UhvmRFtOBZuV+5lhKaETMmI9RxWRzIT54tgZvnTKEMeJdqUsXqi/J3IijZnKyHVKYsdm1ZuL/3m9zMaNMOcqzSxTdLkozgS2CZ5/jodcM2rF1BFCNXe3YjommlDr8im7EPzVl9dJu17zr2v1h5tqs1HEUYJzuIAr8OEWmnAPLQiAAodneIU3pNALekcfy9YNVMycwR+gzx/S1I6p</latexit>

@t log fµ = ~rµ · ~c� �µ
<latexit sha1_base64="6VV1XTsCM4c8gdqStn6KSROTFDY="></latexit>

rµ,i
<latexit sha1_base64="vNencA/O3GlUegxoF2NVd79coYg=">AAAB8HicbZC7SgNBFIbPektMvEQt0wwGwULCbixMGbSxjGAukixhdjKbDJmZXWZmhbDkDexsLBSx9XHsfA1rCyeXQhN/GPj4/3OYc04Qc6aN6346a+sbm1uZ7HYuv7O7t184OGzqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyupnnrnirNInlrxjH1BR5IFjKCjbXuVC/tiuSMTXqFklt2Z0Kr4C2gVCt+XWbyD9/1XuGj249IIqg0hGOtO54bGz/FyjDC6STXTTSNMRnhAe1YlFhQ7aezgSfoxDp9FEbKPmnQzP3dkWKh9VgEtlJgM9TL2dT8L+skJqz6KZNxYqgk84/ChCMToen2qM8UJYaPLWCimJ0VkSFWmBh7o5w9gre88io0K2XvvFy58Uq1KsyVhSIcwyl4cAE1uIY6NICAgEd4hhdHOU/Oq/M2L11zFj1H8EfO+w8bRZOQ</latexit>
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<latexit sha1_base64="wPrunWxx3yqYpBfbSnXTkdio5Eg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnRPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGKS5Qt</latexit>

Metabolites 
            (            )R�1

<latexit sha1_base64="g/KXlMR//J3uNE+jDw1403fdplg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnFPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGIwJQs</latexit>

Common 
strain pool

Community 
assembly

1. Randomly assembled 
communities

2. First-step 
mutations ci

<latexit sha1_base64="mxGJvIO7r92rOVShbF16xk7KOvI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2wgBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHz7ejb0=</latexit>

fµ
<latexit sha1_base64="18in6388y7vS4Wm+covqxtOthIk=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBE8ld0q2GPBi8cKbltol5JNs21okl2SrFCW/gYvHhTx6g/y5r8xbfegrQ8GHu/NMDMvSgU31vO+0cbm1vbObmmvvH9weHRcOTltmyTTlAU0EYnuRsQwwRULLLeCdVPNiIwE60STu7nfeWLa8EQ92mnKQklGisecEuukIB70ZTaoVL2atwBeJ35BqlCgNah89YcJzSRTlgpiTM/3UhvmRFtOBZuV+5lhKaETMmI9RxWRzIT54tgZvnTKEMeJdqUsXqi/J3IijZnKyHVKYsdm1ZuL/3m9zMaNMOcqzSxTdLkozgS2CZ5/jodcM2rF1BFCNXe3YjommlDr8im7EPzVl9dJu17zr2v1h5tqs1HEUYJzuIAr8OEWmnAPLQiAAodneIU3pNALekcfy9YNVMycwR+gzx/S1I6p</latexit>
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Isolated niches

Scaling relations

@t log fµ = ~rµ · ~c� �µ
<latexit sha1_base64="6VV1XTsCM4c8gdqStn6KSROTFDY="></latexit>

rµ,i
<latexit sha1_base64="vNencA/O3GlUegxoF2NVd79coYg=">AAAB8HicbZC7SgNBFIbPektMvEQt0wwGwULCbixMGbSxjGAukixhdjKbDJmZXWZmhbDkDexsLBSx9XHsfA1rCyeXQhN/GPj4/3OYc04Qc6aN6346a+sbm1uZ7HYuv7O7t184OGzqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyupnnrnirNInlrxjH1BR5IFjKCjbXuVC/tiuSMTXqFklt2Z0Kr4C2gVCt+XWbyD9/1XuGj249IIqg0hGOtO54bGz/FyjDC6STXTTSNMRnhAe1YlFhQ7aezgSfoxDp9FEbKPmnQzP3dkWKh9VgEtlJgM9TL2dT8L+skJqz6KZNxYqgk84/ChCMToen2qM8UJYaPLWCimJ0VkSFWmBh7o5w9gre88io0K2XvvFy58Uq1KsyVhSIcwyl4cAE1uIY6NICAgEd4hhdHOU/Oq/M2L11zFj1H8EfO+w8bRZOQ</latexit>



Some qualitative features can be recapitulated by simple resource 
competition models evolving in the high diversity limit

External 
Environ

M
icr

ob
ial

 s
tra

in
s 

(  
   

   
  )

 
S�

1
<latexit sha1_base64="wPrunWxx3yqYpBfbSnXTkdio5Eg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnRPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGKS5Qt</latexit>

Metabolites 
            (            )R�1

<latexit sha1_base64="g/KXlMR//J3uNE+jDw1403fdplg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnFPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGIwJQs</latexit>

Common 
strain pool

Community 
assembly

1. Randomly assembled 
communities

2. First-step 
mutations ci

<latexit sha1_base64="mxGJvIO7r92rOVShbF16xk7KOvI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2wgBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHz7ejb0=</latexit>

fµ
<latexit sha1_base64="18in6388y7vS4Wm+covqxtOthIk=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBE8ld0q2GPBi8cKbltol5JNs21okl2SrFCW/gYvHhTx6g/y5r8xbfegrQ8GHu/NMDMvSgU31vO+0cbm1vbObmmvvH9weHRcOTltmyTTlAU0EYnuRsQwwRULLLeCdVPNiIwE60STu7nfeWLa8EQ92mnKQklGisecEuukIB70ZTaoVL2atwBeJ35BqlCgNah89YcJzSRTlgpiTM/3UhvmRFtOBZuV+5lhKaETMmI9RxWRzIT54tgZvnTKEMeJdqUsXqi/J3IijZnKyHVKYsdm1ZuL/3m9zMaNMOcqzSxTdLkozgS2CZ5/jodcM2rF1BFCNXe3YjommlDr8im7EPzVl9dJu17zr2v1h5tqs1HEUYJzuIAr8OEWmnAPLQiAAodneIU3pNALekcfy9YNVMycwR+gzx/S1I6p</latexit>
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Scaling relations

@t log fµ = ~rµ · ~c� �µ
<latexit sha1_base64="6VV1XTsCM4c8gdqStn6KSROTFDY="></latexit>

rµ,i
<latexit sha1_base64="vNencA/O3GlUegxoF2NVd79coYg=">AAAB8HicbZC7SgNBFIbPektMvEQt0wwGwULCbixMGbSxjGAukixhdjKbDJmZXWZmhbDkDexsLBSx9XHsfA1rCyeXQhN/GPj4/3OYc04Qc6aN6346a+sbm1uZ7HYuv7O7t184OGzqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyupnnrnirNInlrxjH1BR5IFjKCjbXuVC/tiuSMTXqFklt2Z0Kr4C2gVCt+XWbyD9/1XuGj249IIqg0hGOtO54bGz/FyjDC6STXTTSNMRnhAe1YlFhQ7aezgSfoxDp9FEbKPmnQzP3dkWKh9VgEtlJgM9TL2dT8L+skJqz6KZNxYqgk84/ChCMToen2qM8UJYaPLWCimJ0VkSFWmBh7o5w9gre88io0K2XvvFy58Uq1KsyVhSIcwyl4cAE1uIY6NICAgEd4hhdHOU/Oq/M2L11zFj1H8EfO+w8bRZOQ</latexit>

Simulations 
(KO mutations 
+ metabolic 
constraint)

coexists 
w/ parent

replaces   
parentS = 15

<latexit sha1_base64="SEMu2qZ3sglrcVBoo7KgcU8YimE=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiS1ohuh4MZlRfuANpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z40WcKW3b31ZhZXVtfaO4Wdra3tndK+8ftFUYS0JbJOSh7HpYUc4EbWmmOe1GkuLA47TjTa4zv/NIpWKhuNfTiLoBHgnmM4K1kR76AdZjgnlyl14554Nyxa7aM6Bl4uSkAjmag/JXfxiSOKBCE46V6jl2pN0ES80Ip2mpHysaYTLBI9ozVOCAKjeZpU7RiVGGyA+leUKjmfp7I8GBUtPAM5NZSrXoZeJ/Xi/W/qWbMBHFmgoyP+THHOkQZRWgIZOUaD41BBPJTFZExlhiok1RJVOCs/jlZdKuVZ2zau22XmnU8zqKcATHcAoOXEADbqAJLSAg4Rle4c16sl6sd+tjPlqw8p1D+APr8wf895Ig</latexit>

R = 50
<latexit sha1_base64="2GZ59dz0tieZHuemqTdwHO+cq0Q=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiS1ohuh4MZlFfuANpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z40WcKW3b31ZhZXVtfaO4Wdra3tndK+8ftFUYS0JbJOSh7HpYUc4EbWmmOe1GkuLA47TjTa4zv/NIpWKhuNfTiLoBHgnmM4K1kR76AdZjgnlyl16d24Nyxa7aM6Bl4uSkAjmag/JXfxiSOKBCE46V6jl2pN0ES80Ip2mpHysaYTLBI9ozVOCAKjeZpU7RiVGGyA+leUKjmfp7I8GBUtPAM5NZSrXoZeJ/Xi/W/qWbMBHFmgoyP+THHOkQZRWgIZOUaD41BBPJTFZExlhiok1RJVOCs/jlZdKuVZ2zau22XmnU8zqKcATHcAoOXEADbqAJLSAg4Rle4c16sl6sd+tjPlqw8p1D+APr8wf575Ie</latexit>

S = 50
<latexit sha1_base64="yr4UnVEtcs1L32bjaGnmaxHR8DI=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiS1ohuh4MZlRfuANpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z40WcKW3b31ZhZXVtfaO4Wdra3tndK+8ftFUYS0JbJOSh7HpYUc4EbWmmOe1GkuLA47TjTa4zv/NIpWKhuNfTiLoBHgnmM4K1kR76AdZjgnlyl16d24Nyxa7aM6Bl4uSkAjmag/JXfxiSOKBCE46V6jl2pN0ES80Ip2mpHysaYTLBI9ozVOCAKjeZpU7RiVGGyA+leUKjmfp7I8GBUtPAM5NZSrXoZeJ/Xi/W/qWbMBHFmgoyP+THHOkQZRWgIZOUaD41BBPJTFZExlhiok1RJVOCs/jlZdKuVZ2zau22XmnU8zqKcATHcAoOXEADbqAJLSAg4Rle4c16sl6sd+tjPlqw8p1D+APr8wf7d5If</latexit>

R = 50
<latexit sha1_base64="2GZ59dz0tieZHuemqTdwHO+cq0Q=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiS1ohuh4MZlFfuANpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z40WcKW3b31ZhZXVtfaO4Wdra3tndK+8ftFUYS0JbJOSh7HpYUc4EbWmmOe1GkuLA47TjTa4zv/NIpWKhuNfTiLoBHgnmM4K1kR76AdZjgnlyl16d24Nyxa7aM6Bl4uSkAjmag/JXfxiSOKBCE46V6jl2pN0ES80Ip2mpHysaYTLBI9ozVOCAKjeZpU7RiVGGyA+leUKjmfp7I8GBUtPAM5NZSrXoZeJ/Xi/W/qWbMBHFmgoyP+THHOkQZRWgIZOUaD41BBPJTFZExlhiok1RJVOCs/jlZdKuVZ2zau22XmnU8zqKcATHcAoOXEADbqAJLSAg4Rle4c16sl6sd+tjPlqw8p1D+APr8wf575Ie</latexit>



Some qualitative features can be recapitulated by simple resource 
competition models evolving in the high diversity limit

External 
Environ

M
icr

ob
ial

 s
tra

in
s 

(  
   

   
  )

 
S�

1
<latexit sha1_base64="wPrunWxx3yqYpBfbSnXTkdio5Eg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnRPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGKS5Qt</latexit>

Metabolites 
            (            )R�1

<latexit sha1_base64="g/KXlMR//J3uNE+jDw1403fdplg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnFPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGIwJQs</latexit>

Common 
strain pool

Community 
assembly

1. Randomly assembled 
communities

2. First-step 
mutations ci

<latexit sha1_base64="mxGJvIO7r92rOVShbF16xk7KOvI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2wgBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHz7ejb0=</latexit>

fµ
<latexit sha1_base64="18in6388y7vS4Wm+covqxtOthIk=">AAAB7HicbVBNSwMxEJ34WetX1aOXYBE8ld0q2GPBi8cKbltol5JNs21okl2SrFCW/gYvHhTx6g/y5r8xbfegrQ8GHu/NMDMvSgU31vO+0cbm1vbObmmvvH9weHRcOTltmyTTlAU0EYnuRsQwwRULLLeCdVPNiIwE60STu7nfeWLa8EQ92mnKQklGisecEuukIB70ZTaoVL2atwBeJ35BqlCgNah89YcJzSRTlgpiTM/3UhvmRFtOBZuV+5lhKaETMmI9RxWRzIT54tgZvnTKEMeJdqUsXqi/J3IijZnKyHVKYsdm1ZuL/3m9zMaNMOcqzSxTdLkozgS2CZ5/jodcM2rF1BFCNXe3YjommlDr8im7EPzVl9dJu17zr2v1h5tqs1HEUYJzuIAr8OEWmnAPLQiAAodneIU3pNALekcfy9YNVMycwR+gzx/S1I6p</latexit>

Community size, S
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Scaling relations

@t log fµ = ~rµ · ~c� �µ
<latexit sha1_base64="6VV1XTsCM4c8gdqStn6KSROTFDY="></latexit>

rµ,i
<latexit sha1_base64="vNencA/O3GlUegxoF2NVd79coYg=">AAAB8HicbZC7SgNBFIbPektMvEQt0wwGwULCbixMGbSxjGAukixhdjKbDJmZXWZmhbDkDexsLBSx9XHsfA1rCyeXQhN/GPj4/3OYc04Qc6aN6346a+sbm1uZ7HYuv7O7t184OGzqKFGENkjEI9UOsKacSdowzHDajhXFIuC0FYyupnnrnirNInlrxjH1BR5IFjKCjbXuVC/tiuSMTXqFklt2Z0Kr4C2gVCt+XWbyD9/1XuGj249IIqg0hGOtO54bGz/FyjDC6STXTTSNMRnhAe1YlFhQ7aezgSfoxDp9FEbKPmnQzP3dkWKh9VgEtlJgM9TL2dT8L+skJqz6KZNxYqgk84/ChCMToen2qM8UJYaPLWCimJ0VkSFWmBh7o5w9gre88io0K2XvvFy58Uq1KsyVhSIcwyl4cAE1uIY6NICAgEd4hhdHOU/Oq/M2L11zFj1H8EfO+w8bRZOQ</latexit>

Simulations 
(KO mutations 
+ metabolic 
constraint)

coexists 
w/ parent

replaces   
parentS = 15

<latexit sha1_base64="SEMu2qZ3sglrcVBoo7KgcU8YimE=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiS1ohuh4MZlRfuANpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z40WcKW3b31ZhZXVtfaO4Wdra3tndK+8ftFUYS0JbJOSh7HpYUc4EbWmmOe1GkuLA47TjTa4zv/NIpWKhuNfTiLoBHgnmM4K1kR76AdZjgnlyl14554Nyxa7aM6Bl4uSkAjmag/JXfxiSOKBCE46V6jl2pN0ES80Ip2mpHysaYTLBI9ozVOCAKjeZpU7RiVGGyA+leUKjmfp7I8GBUtPAM5NZSrXoZeJ/Xi/W/qWbMBHFmgoyP+THHOkQZRWgIZOUaD41BBPJTFZExlhiok1RJVOCs/jlZdKuVZ2zau22XmnU8zqKcATHcAoOXEADbqAJLSAg4Rle4c16sl6sd+tjPlqw8p1D+APr8wf895Ig</latexit>

R = 50
<latexit sha1_base64="2GZ59dz0tieZHuemqTdwHO+cq0Q=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiS1ohuh4MZlFfuANpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z40WcKW3b31ZhZXVtfaO4Wdra3tndK+8ftFUYS0JbJOSh7HpYUc4EbWmmOe1GkuLA47TjTa4zv/NIpWKhuNfTiLoBHgnmM4K1kR76AdZjgnlyl16d24Nyxa7aM6Bl4uSkAjmag/JXfxiSOKBCE46V6jl2pN0ES80Ip2mpHysaYTLBI9ozVOCAKjeZpU7RiVGGyA+leUKjmfp7I8GBUtPAM5NZSrXoZeJ/Xi/W/qWbMBHFmgoyP+THHOkQZRWgIZOUaD41BBPJTFZExlhiok1RJVOCs/jlZdKuVZ2zau22XmnU8zqKcATHcAoOXEADbqAJLSAg4Rle4c16sl6sd+tjPlqw8p1D+APr8wf575Ie</latexit>

S = 50
<latexit sha1_base64="yr4UnVEtcs1L32bjaGnmaxHR8DI=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiS1ohuh4MZlRfuANpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z40WcKW3b31ZhZXVtfaO4Wdra3tndK+8ftFUYS0JbJOSh7HpYUc4EbWmmOe1GkuLA47TjTa4zv/NIpWKhuNfTiLoBHgnmM4K1kR76AdZjgnlyl16d24Nyxa7aM6Bl4uSkAjmag/JXfxiSOKBCE46V6jl2pN0ES80Ip2mpHysaYTLBI9ozVOCAKjeZpU7RiVGGyA+leUKjmfp7I8GBUtPAM5NZSrXoZeJ/Xi/W/qWbMBHFmgoyP+THHOkQZRWgIZOUaD41BBPJTFZExlhiok1RJVOCs/jlZdKuVZ2zau22XmnU8zqKcATHcAoOXEADbqAJLSAg4Rle4c16sl6sd+tjPlqw8p1D+APr8wf7d5If</latexit>

R = 50
<latexit sha1_base64="2GZ59dz0tieZHuemqTdwHO+cq0Q=">AAAB9XicbVDLSsNAFL2pr1pfVZduBovgqiS1ohuh4MZlFfuANpbJdNIOnUzCzEQpIf/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z40WcKW3b31ZhZXVtfaO4Wdra3tndK+8ftFUYS0JbJOSh7HpYUc4EbWmmOe1GkuLA47TjTa4zv/NIpWKhuNfTiLoBHgnmM4K1kR76AdZjgnlyl16d24Nyxa7aM6Bl4uSkAjmag/JXfxiSOKBCE46V6jl2pN0ES80Ip2mpHysaYTLBI9ozVOCAKjeZpU7RiVGGyA+leUKjmfp7I8GBUtPAM5NZSrXoZeJ/Xi/W/qWbMBHFmgoyP+THHOkQZRWgIZOUaD41BBPJTFZExlhiok1RJVOCs/jlZdKuVZ2zau22XmnU8zqKcATHcAoOXEADbqAJLSAg4Rle4c16sl6sd+tjPlqw8p1D+APr8wf575Ie</latexit>

Many successful KOs can 
coexist with parent strain, 
even in ‘saturated’ comm's 
where other species are 
driven to extinction. 



Some qualitative features can be recapitulated by simple resource 
competition models evolving in the high diversity limit
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<latexit sha1_base64="wPrunWxx3yqYpBfbSnXTkdio5Eg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnRPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGKS5Qt</latexit>

Metabolites 
            (            )R�1

<latexit sha1_base64="g/KXlMR//J3uNE+jDw1403fdplg=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBFclaQKuiy6cVnFPqAJZTKdpEMnkzAzUUrMp7hxoYhbv8Sdf+OkzUJbDwwczrmXe+b4CaNS2fa3sbK6tr6xWdmqbu/s7u2btYOujFOBSQfHLBZ9H0nCKCcdRRUj/UQQFPmM9PzJdeH3HoiQNOb3apoQL0IhpwHFSGlpaNbcCKkxRiy7yzM3DHNnaNbthj2DtUycktShRHtofrmjGKcR4QozJOXAsRPlZUgoihnJq24qSYLwBIVkoClHEZFeNoueWydaGVlBLPTjypqpvzcyFEk5jXw9WQSVi14h/ucNUhVcehnlSaoIx/NDQcosFVtFD9aICoIVm2qCsKA6q4XHSCCsdFtVXYKz+OVl0m02nLNG8/a83roq66jAERzDKThwAS24gTZ0AMMjPMMrvBlPxovxbnzMR1eMcucQ/sD4/AGIwJQs</latexit>
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Scaling relations
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Many successful KOs can 
coexist with parent strain, 
even in ‘saturated’ comm's 
where other species are 
driven to extinction. 

+ small / negative changes  
in freq of focal species



Some qualitative features can be recapitulated by simple resource 
competition models evolving in the high diversity limit
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Metabolites 
            (            )R�1
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Many successful KOs can 
coexist with parent strain, 
even in ‘saturated’ comm's 
where other species are 
driven to extinction. 

+ small / negative changes  
in freq of focal species

+   analytical calc’ns
(replica theory)
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drive this counter-intuitive behavior?
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