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Challenges:

|. Structure & function emerge from many interacting parts (ecology)
2. Residents can potentially evolve over time (evolution)

( pathogens, lab expt’s: /¢ ~ years, months, days )
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Is short-term evolution important in the gut microbiome?

Species abundance

Time (~weeks, months, years?) —

Problem: little empirical data. Many basic questions still not known.

- What are relevant timescales for within-host evolution? Does it happen at all?
- What do population genetics of this process look like?

- Genetic structure of typical resident population?

- How important are genetic drift, horizontal gene transfer, immigration?
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Measuring evolutionary dynamics in shotgun metagenomes
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First pass: what can we learn from a large healthy cohort?

Samples: Human Microbiome Project

Host | Host 2 Host ~100

%k Nandita Garud K. Pollard O. Hallatschek
(UCLA) (UCSF) (UC Berkeley)




First pass: what can we learn from a large healthy cohort?

Between-host
evolution

Within-host evolution /
strain replacement

Multiple timescales
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Parsing the genetic structure of a single resident population

Present-day
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What we can actually measure: frequencies of SNVs

n A

Q| |[CAGTTTTATTATGGTGTTGA

)

" AGTTTTATTATGGTGTTGAT E.g.,“T «>A” mutation

-

= TATTATGGTGTTGATGTACA| @ 607% frequency

) in this species

2 GTTTTATTTTGGTGTTGATG o

g in this sample
Across-host dynamics v | TTATTTTGGTGTTGATGTAC

mutation, selection, [GCCAGTTTTATT TGGTGTTGATGTACAAGCT]

recombination, genetic drift,. .. ) Purple species reference genome




Genetic structure of resident pop’ns is highly variable across hosts

10° E
0 10* L
2 o :
=~ O 103 L
L :
Z & 107
wn S
Ny 10! |

100 L

<— B. vulgatus pop’ns in ~700 different fecal samples —



Genetic structure of resident pop’ns is highly variable across hosts

Host B
] ] ] ]
50%  75% 100% Host C

10° L— Major allele freq
2 104 | ! L
> ~ 3 / 50%  75% 100%
~ g 103 F Major allele freq
w Vv E Host A f
% & 107k
wmw I R
Ry 10'F  50%  75% 100%

F Major allele freq
10°

<— B. vulgatus pop’ns in ~700 different fecal samples —



Genetic structure of resident pop’ns is highly variable across hosts

) Host B
Too many SNVs to arise
de novo in host lifetime o
50%  75% 100% Host C
10° L— Major allele freq
0 104 - f | | | |
S ~ 3 / 50%  75% 100%
xQ . Major allele freq
~~ O 103 L
w Vv Host A
% & 102
wnw L1
1+ 10t 50%  75% 100%
F Major allele freq
10°

<— B. vulgatus pop’ns in ~700 different fecal samples —



Genetic structure of resident pop’ns is highly variable across hosts

) Host B
Too many SNVs to arise
de novo in host lifetime o
50%  75% 100% Host C
10° L— Major allele freq
0 10% f [ R
S ~ 3 / 50%  75% 100%
xQ . Major allele freq
~~ O 103 L
w Vv Host A L
% Voo | Too much variability
ah S il for large random sample
+* 10"  50% 75% 100%  from across host pop'n
Major allele freq
10°

<— B. vulgatus pop’ns in ~700 different fecal samples —



Genetic structure of resident pop’ns is highly variable across hosts

Host B
] ] ] ]
50%  75% 100% Host C

10° L— Major allele freq
2 104 | ! L
> ~ 3 / 50%  75% 100%
~ g 103 F Major allele freq
w Vv E Host A f
% & 107k
wmw I R
Ry 10'F  50%  75% 100%

F Major allele freq
10°

<— B. vulgatus pop’ns in ~700 different fecal samples —

“Oligo-colonization” ~ a few external strains
see also Truong et al 2017 at intermediate ﬂ”eqS




Genetic structure of resident pop’ns is highly variable across hosts

Resolving strains = Host B
hard inverse problem

S0%  75%  100% Host C
10F Major allele freq
B N r —
| / “““““““““““““““““““““““““““ 50%  75% 100%
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Major a"ele freq
““““““““

# SNVs / Mb
(0.2<f<0.8)

103 é_ I Host A ‘HHHHHHHHH f
_ iy
|
ol L% v IOJ%

Major allele freq

10° L

<— B. vulgatus pop’ns in ~700 different fecal samples —

. /\n=2,3,..
“Oligo-colonization” ~ a few external strains )
see also Truong et al 2017 at intermediate ﬂ”eqS




Genetic structure of resident pop’ns is highly variable across hosts

Resolving strains = Host B :
. but some easy special cases
hard inverse problem
50%  75% 100% Host C
10° L— Major allele freq
] ] ] ]

10* L

Major allele freq

103 é_ I Host A ‘HHHHHHHHH f
_ iy
|
ol L% v IOJ%

Major allele freq

/ “““““““““““““““““““““““““““ 50%  75% 100%
““““““““““““

# SNVs / Mb
(02<f<0.8)

10° L

<— B. vulgatus pop’ns in ~700 different fecal samples —

. /\n=2,3,..
“Oligo-colonization” ~ a few external strains )
see also Truong et al 2017 at intermediate ﬂ”eqS




Genetic structure of resident pop’ns is highly variable across hosts
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Approach: Focus on “easy” samples where we can infer
the dominant lineage w/ high confidence
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Detecting genetic differences between strains in “easy’” samples
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Applications to HMP cohort: general trends across ~40 species

+ Genetic diversity is “old” ( T, ~ 10°—~10* SNVs/Mb)
» mostly synonymous ( pIN/pS~0.1) negative selection

- Widespread (“quasi-sexual®)

Within-host timescales (~6mo)
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Distinguishing local evolution & strain replacement
using time-reversal symmetry

Global strain replacement:

population genetic quantities
should be locally symmetric
under time-reversal (¢ +— —t)

Local evolution: asymmetric

(most new mutations biased
away from global consensus)




Modification SNVs
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Distinguishing local evolution & strain replacement
using time-reversal symmetry
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Modification SNVs

Distinguishing local evolution & strain replacement
using time-reversal symmetry
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Probing replacement & modification on longer timescales

Ideal data: track (many) individual hosts over |0+ years

— benefits of local evolution
dont compound indefinitely
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Cells from species A
>
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>
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>
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—> mixture of “strain replacement”
and “evolutionary modification”

<
>

g
~
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Day 200

- Next steps: what do the population genetics of this process look like?
How important are natural selection, genetic drift, recombination w/in hosts?
- Driven by sudden environmental changes (e.g. ABX)? or continual evolution?

« What do “sweeps" look like! Selection strengths! de novo or pre-existing?

Does it matter if “strain replacement” vs “evolutionary modification” !

—> requires denser longitudinal sampling



Next steps: dense time series data to infer dynamics of this process
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Next steps: dense time series data to infer dynamics of this process

SR Mutations within species:
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+
: 4 33 other species
Morteza  Mike Snyder (18 w/ genetic changes)

Roodgar  (Stanford)
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Next steps: dense time series data to infer dynamics of this process

Mutati ithi ies:
Microbial | #— 4 utations within species .
Load 3
i . 5
| (| - 11| 3
Q
8
Species E
(relative) 1 -
abundance m
S
(I) ZIO 4IO 6IO 8I0 ! 60 : é oot 21 0 Phascolarctobacterium §
Time (days) N %
A | 3

Question: how do native gut 2 0 20 40 60 8
microbiota respond to ABX §
perturbations at the genetic level? 2
. ) 5
T
(0]
3

2yr 0 20 40 60 80 100 120 140
Time (days)

+

33 other species

Morteza  Mike Snyder (18 w/ genetic changes)
Roodgar  (Stanford)




Previous work: effects of ABX treatment at species level

* Severe cases — purges native flora, allows for C. diff infection

» lypical oral dose produces more resilient response:

PC2 (species abundances)

Oral ABX
(ciprofloxacin)

Mostly recovers ~ Host |
after ~2 weeks ‘ ‘ Baseline

5

‘ Time (days)

Large perturbations
after ~3-5 days

OTU composition (%)
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PCIl (species abundances)

Dethlefsen and Relman, PNAS 2011



Previous work: effects of ABX treatment at species level

* Severe cases — purges native flora, allows for C. diff infection

» lypical oral dose produces more resilient response:

Recovery s

personalized:
Mostly recovers ~ Host |

after ~2 weeks O @ Bbascline @ Host2

Large perturbations
after ~3-5 days

PC2 (species abundances)

PCIl (species abundances)

Dethlefsen and Relman, PNAS 2011



OTU composition (%)

Question: How is this species level resilience
implemented at the strain level?
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Question: How is this species level resilience
implemented at the strain level?

Re-colonization by new strain of same species!
or survivors of original strain?
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Question: How is this species level resilience
implemented at the strain level?

Re-colonization by new strain of same species!
or survivors of original strain?

Persisted due to pre-existing ABX resistance!?
Or evolved ABX resistance during treatment?
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Question: How is this species level resilience
implemented at the strain level?

Re-colonization by new strain of same species!
or survivors of original strain?

Persisted due to pre-existing ABX resistance!?
Or evolved ABX resistance during treatment?

OTU composition (%)

] ] ] ]
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Add'l selection pressures unmasked

Time (days) . .
during transient recovery phase!



Question: How is this species level resilience
implemented at the strain level?

Re-colonization by new strain of same species!
or survivors of original strain?

Persisted due to pre-existing ABX resistance!?
Or evolved ABX resistance during treatment?

OTU composition (%)

-10 -5 O 5 10 1

| | |
5 25 : .
Time (days) Add'l selection pressures unmasked

during transient recovery phase!

[ Can we look “‘under the hood’ to find out? J




Next steps: dense time series data to infer dynamics of this process
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(18 w/ genetic changes)
Roodgar* & Good* et al (Genome Research, 2021)



Next steps: dense time series data to infer dynamics of this process
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Next steps: dense time series data to infer dynamics of this process

= but also inconsistent w/ simplest
models of ABX resistance evolution
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Next steps: dense time series data to infer dynamics of this process

= but also inconsistent w/ simplest
models of ABX resistance evolution
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Time —»
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Very different
from cartoon!

Roodgar* & Good* et al (Genome Research, 2021)
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Next steps: dense time series data to

Instead, common trends:

- Sweeping variants often
present at low fregs before ABX

Roodgar* & Good* et al (Genome Research, 2021)
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Next steps: dense time series data to infer dynamics of this process

, Mutations within species:
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Roodgar* & Good* et al (Genome Research, 2021)



Next steps: dense time series data to infer dynamics of this process
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- But few fix — many return back s
to initial levels w/in a few months 2yr 0 20 40

80 100 120 140
Time (days)
+

33 other species

(18 w/ genetic changes)
Roodgar* & Good* et al (Genome Research, 2021)



J
J

10 Jaquinu |ejo]

>N bw -
On | W ______:___ _______._____ ____._._____ _______._____ ____- [ .m m _I I_ c m I_I
c n C Q5 R
ﬂ S S <
- D) m m an .
I

m Dn:h > e 9 i
nmu \______/ N
O 4 i
) = I
=
= M o =
c < o — -
© & % —
(7] 2 9 ) i
e w o) — |
o mm " oY —
C m o — |
() c .£ e i
o o 2 -
7y) M 8 °
LN 8 o .
(g9 ] m = _— ol
~ 5 &

m — - ot
) 9 =%
7] 5 2 e o |
0 V .4“ — -
Ll Z a — *
8 |== ] | =]
] H N - PR—
O i
Q
t =
h —— —— ot
E 3 —
om —a— oI
o) _— —1
O e o |
()
ul —a— R
()] — — |
wm = S
7 - — |
2 = T
() - T
r — o1
At Tt ol
w E-- F:-- E-- E-- E-- _ _ _ _ _ _ _ _ _ _ _
()] 0 < ™ ~ ~ o LU S 3 % © WYY ANO
c S S S S = S S g —ecececec

SEPIEIEIT paulelal

= 1P ANS sbayy onoor

WNSOLIJUSA wna3degny
wnaloeq aeadelidsouyde
S2W0d snd20501do)

ds sadnsiy

SN213A|1SO|N||92 Saploialdoeyq
SISUBI|ISSeW Saplolaldeg
1Ipjobauly saploialdeq
S1102193S Saplolaldeg

ele|d e||210naideled
SN30SS0JD OlqIALAING
2edded saplolaldeqg
siulwoylunsaul ejaisauleg
liplobauly sadnsi|y

9|e3daJ wndldeqny
1Iyuabba sapiosaldeg
sisuajebauas sadnsiy
[1uopJapuo sadisiy
wnaeJ|s wnuayeqny

ds wnuajdoeqoldie|odseyd
s|Jae) saploialdegq

e|0204d0d Saploialdeq

ds 1932eq]I||12S0

s|uoselsip saploiajdeqeled
snajuydue|ds 1a32equopO
siwJojiun saploialdeq
snjeb|nA saplolaldeq
SUDA|OSIURIAX Soplolaldeg
elI9|Xam epne|g

€ lizylusneid wnaldoeqiedse
sanbuoj sndd0d0ujwny

T llzalusnead wniialdeqijedae
oepJaw saploiajdeqeled
esoJIA seuowdlIAIng

12 wnualdeqijedaey

Z lzalusnead wnuajoeqiedse

suabij@ wnualdeqny



Next steps: dense time series data to infer dynamics of this process

, Mutations within species:

Eubacterium eligens

s>100%/day |

JuawadDp|daJ uIDA1S

| 2yr 0 20 40 60 80 100 120 140
i S
3
&
=
a
s>30%/day .
Instead, common trends: NEAt=a el el 3
2yr 0 20 40 60 80 100 120 140
. Sweeping variants often + 34 other species (19 w/ genetic changes)
present at low fregs before ABX - ~

Evidence for add'l ecological

——p | structure within species in

this complex community?
. J

» But few fix — many return back
to inttial levels w/in a few months

See also: Zhao* & Liberman* et al
Roodgar® & Good* et al (Genome Research, 202 1) (Cell Host & Microbe, 2019)



Next steps: does evolution alter ecological structure of gut microbiota?
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Good*, McDonald* et al (I\/ature 2017)

MWW JW . 'u‘“’ W L e

Lenski’s

LTEE?

Layton Rosenfeld
Undergrad BioX Fellow



Next steps: does evolution alter ecological structure of gut microbiota?

Good*, McDonald* et al (I\/ature 2017)
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Next steps: does evolution alter ecological structure of gut microbiota?

-

\_

~
Challenge: a few known examples, but global impact difficult to
quantify due to extensive heterogeneity (hosts, species, mut’s)

Y

Good*, McDonald* et al (Nature, 2017)
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Next steps: does evolution alter ecological structure of gut microbiota?

Good*, McDonald* et al (I\/ature 2017)

2 ll{mm "*a* Like
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‘ ' | LTEE?
VS
2 Separate
«— ecological
“niches”?
TO —— Compare —— T1
ecological
structure
: )

Challenge: a few known examples, but global impact difficult to

quantify due to extensive heterogeneity (hosts, species, mut’s)
N\ Y
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Next steps: does evolution alter ecological structure of gut microbiota?

Example Host |:
2 replacement
events w/in species

T0 — T

T0O —— Compare —— T1
ecological (~6mo)
structure
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Some
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Next steps: does evolution alter ecological structure of gut microbiota?
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ecological
structure
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Next steps: does evolution alter ecological structure of gut microbiota?

Example Host I: Example Host 2:
2 replacement No genetic changes
events w/in species w/in species
Species w/
replacements
Some
species go
“extinct”
<« Others
“invade”
—
T0O —— Compare — T1 0 Tl
ecological (~6mo)

structure

Layton Rosenfeld
Undergrad BioX Fellow



Next steps: does evolution alter ecological structure of gut microbiota?

- &~ Permutation-based test

_

ak . to assess significance

A(community structure)
Jensen-Shannon distance

T0O —— Compare — T1 X > X
p. {\Q’ ‘Z)(O {\Q’: o(\ @\S <z,Q
ecological & & E X &
structure SIS o8
S L8 @
o) Q/@O KQQ

Preliminary evidence that genetic changes wlin species are

statistically associated w/ larger shifts in species composition
- Y,

Layton Rosenfeld
Undergrad BioX Fellow



Observed data

Permutation tests to quantify eco-evolutionary correlations

( R
Host I: Host 2: Host n:
Species.w/ = = Ll u
genetic O . =

changes o | N

7 Shuffle geneti

TO —» Tl TO —» T TO — T uffle genetic

~ < events across

Host I: Host 2: Host n: (eligible) hosts

.
N |
i
H
~

T0 — Tl T0 — TI T0 — TI
Layton Rosenfeld
Undergrad BioX Fellow



Genetic turnover w/in species is associated with larger shifts
in the species-level composition of the gut microbiota

A(community structure)
Jensen-Shannon distance

N S
Q@ ARSI
Q QQ' . .0 3\ Q>
T0 —— Compare — T1 0?@0 @"Qé’Q %Q,& @} é@
ecological P O & NI
structure s« &® @Q

But, changes in community structure not solely
driven by frequency increases in focal species
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Undergrad BioX Fellow



Genetic turnover w/in species is associated with larger shifts
in the species-level composition of the gut microbiota
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But, changes in community structure not solely
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Genetic turnover w/in species is associated with larger shifts
in the species-level composition of the gut microbiota
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Genetic turnover w/in species is associated with larger shifts
in the species-level composition of the gut microbiota

T0O —— Compare —— T1
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Genetic turnover w/in species is associated with larger shifts
in the species-level composition of the gut microbiota
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Genetic turnover wlin species is associated with more frequent

extinction events in other species (even if focal species declines )
\_ J
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Genetic turnover w/in species is associated with larger shifts
in the species-level composition of the gut microbiota
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Next steps: does evolution alter ecological structure of gut microbiota?

Possible causal scenarios:

Genetic turnover 2
wlin species -
Genetic turnover )
wlin species "
Environmental
perturbation
Genetic turnover ]

wlin species .
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Next steps: does evolution alter ecological structure of gut microbiota?

Possible causal scenarios:

Genetic turnover

wlin species

|. Replay experiments
w/ synthetic communities

5.
77.

A

1l

A

2. Theory: do similar

behaviors emerge In
simple models where
interactions are known!?



Some qualitative features can be recapitulated by simple resource
competition models evolving in the high diversity limit
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Some qualitative features can be recapitulated by simple resource
competition models evolving in the high diversity limit
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Some qualitative features can be recapitulated by simple resource
competition models evolving in the high diversity limit
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Some qualitative features can be recapitulated by simple resource
competition models evolving in the high diversity limit
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(replica theory)
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Conclusions

Native gut bacteria can evolve within healthy
human hosts on clinically relevant timescales

—> mixture of “strain replacement”
and “evolutionary modification’

Ecological and evolutionary processes are coupled

= (Genetic responses to ABX suggest add’l ecological structure wlin species

—» Genetic turnover correlated w/ global shifts in species-level composition
(but not necessarily w/ abundance of focal species)

I coexists
w/ parent

Similar qualitative behavior observed in simple resource @
competition models evolving in the high-diversity limit ®

®

KoK s
/

e

—> Can theory help us understand the mechanisms

. . . .. . 012345
drive this counter-intuitive behavior? Extinctions
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Garud* BHG* et al, PLoS Bio 2019 Longitudinal ABX study
Roodgar*, BHG* biorxiv 2020
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Conclusions

Native gut bacteria can evolve within healthy
human hosts on clinically relevant timescales

—> mixture of “strain replacement”
and “evolutionary modification’

Ecological and evolutionary processes are coupled

= (Genetic responses to ABX suggest add’l ecological structure wlin species

—» Genetic turnover correlated w/ global shifts in species-level composition
(but not necessarily w/ abundance of focal species)

I coexists
w/ parent

Similar qualitative behavior observed in simple resource @
competition models evolving in the high-diversity limit ®
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—> Can theory help us understand the mechanisms
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drive this counter-intuitive behavior? Extinctions



