Pathway splitting in denitrifying bacterial communities

Karna Gowda / Kuehn Lab / KITP EcoEvo21 / 20210728

Pathway splitting: obligate cross-feeding

full pathway:

split pathway:

cross-feeding possible through transient excretion of intermediates

> cross-feeding obligatory

Nitrifiers as an example

Traditional view of **nitrification**:

Complete nitrifiers (comammox) found in 2015:

$$NH_{3} \xrightarrow{\rightarrow} NO_{2} \xrightarrow{\rightarrow} NO_{3}$$

$$ATP ATP$$

ATP

putatively under selection for rate of ATP generation

isolated from biofilms, putatively under selection for yield

Costa et al., 2006; Daims et al., 2015; van Kessel et al., 2015 See also Pfieffer & Bonhoeffer, 2004; Tsoi et al., 2017

Why do denitrifiers split pathways?

Gowda et al., 2021

	NAR	NIR	NOR	N₂OR	pH 7.4 soil series A	pH 3.7 soil	
						series B	series C
Full-fledged	N ₂				8	0	1
NIR, NOR, N₂OR			N ₂		0	0	3
Only N₂OR				N ₂	2	1	0
NAR*/NIR*, N₂OR	NO ₃ and N	O_2^+ reduced		N ₂	0	0	2
NAR, NIR, NOR		N ₂ O			1	2	0
NIR, NOR		N	2 0		1	4	4
NAR, NIR	N	0			4	0	0
Only NIR		NO			0	2	0
Only NAR	NO ₂ ⁻				19	13	1
DNRA	NO ₃ ⁺ and NO ₂ ⁺ reduced to NH ₄ ⁺				1	1	0

Lycus et al., 2018

1. What environmental factors drive denitrification pathway splitting? 2. An attempt to select for pathway splitting in the lab 3. A proposed theory connecting environment to physiology and selection

()verview

What environmental factors might drive pathway splitting?

- Shotgun metagenomes (KO abundances, ...)
- Limitation: too shallow for MAGs (Zeqian Li)

Non-negative matrix factorization (Lee & Seung, 1999)

pH best predictor of variation in pathway structure

$$= \beta_0 + \beta_1 w_1^i + \beta_2 w_2^i$$

pH controls which mode dominates

Potential mechanism: pH affects nitrite toxicity

spontaneous protonation to nitrous acid, nitric oxide affects enzyme metal centers

*see for ex. Wilks & Slonczewski, 2020

Pathway splitting a possible solution to nitrite toxicity

Segregating metabolic processes into different microbial cells accelerates the consumption of inhibitory substrates, Lilja & Johnson, 2016

Can we select for pathway splitting in an enrichment experiment?

*Thanks to Luis and Kaumudi!

infer genotypes and relative abundances via metagenomics and binning

Do split pathways outcompete the full pathway at lower pH?

Enrichments select for full pathways, but pH selects different specializations

Burkholderiales Enterobacteriaceae

*Gowda et al. 2021

Approximating fitness in the enrichment experiment

$$\frac{dx}{dt} = \left(\gamma_A r_A \frac{A}{K_A + A} + \gamma_I r_I \frac{I}{K_I + I}\right) x$$
$$A \gg K_A, I \gg K_I$$
$$= (\gamma_A r_A + \gamma_I r_I) x = (\mu_A + \mu_I) x$$

x - biomass density A - nitrate concentration I - nitrite concentration

Proposal for a theory

1. Phenotypes are constrained by pH-specific tradeoff curve

Competition for intracellular resources. See also Johnson et al., 2012; Lilja & Johnson, 2016.

Proposal for a theory

- 1. Phenotypes are constrained by pH-specific tradeoff curve
- 2. The curve is concave down at neutral pH

How might pH impact the tradeoff curves? pH 7.3 pH 6.0 PDM21 P. denitrificans NO₃ N_2 NO unbuffered No Nap Nir Nos periplasm Nor Nark Na cytoplasm $NO_2^$ buffered NO₃ 0

Proposal for a theory

- 1. Phenotypes are constrained by pH-specific tradeoff curve
- 2. The curve is concave down at neutral pH
- 3. The curve is deformed asymmetrically as pH decreases

Assumption: nitrite toxicity harms μ_I more than μ_A

Proposal for a theory

- 1. Phenotypes are constrained by pH-specific tradeoff curve
- 2. The curve is concave down at neutral pH
- 3. The curve is deformed asymmetrically as pH decreases

Pathway splitting via asymmetric tradeoff

Next steps

- Enrichments reveal "fittest points" on tradeoff curve.
- Perform enrichment experiments at lower pH levels
- Isolate/phenotype strains
- Locally characterize tradeoff curves

Kyle Crocker

Summary

- pH drives variation in denitrification metagenome structure consistent with pathway splitting
- Possible mechanism: nitrite toxicity increases as pH decreases from neutral
- Proposed theory: pathway splitting occurs via asymmetric tradeoff induced by toxicity

Seppe Kuehn U. Chicago

Madhav Mani Northwestern

Thanks to members of Kuehn Lab!

Zeqian Li Grad student U. Chicago/UIUC Kyle Crocker Postdoc U. Chicago

JAMES S. MCDONNELL FOUNDATION

