Quantum Computing and Why We Need Your Help

John Martinis UC Santa Barbara

Superconducting Qubits: Macro-quantum currents & voltages touching many defects

Outline

- •Quantum computing
- •Superconducting qubits
- •Example defect: two-level states
- •Qubit as new nano-probe of individual defects
- •Correlation of defects with materials

Storage of Information: Bits

Classical bits: 0 or 1

Quantum bits: 0 and 1

 $|0\rangle + |1\rangle$

(Not "dim", or "2.5 volts" !)

Exponential Computation Power

 Classical computation power scales <u>linearly</u>: speed (GHz), size (RAM Mbytes), number processors
☆ 1 GHz
☆☆ 2 GHz

★★★★ 2 GHz, Dual Processor

Quantum computer scales <u>exponentially</u>!

qubit 1qubit 2qubit 33qubits :
parallel $(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)$ 3qubits :
parallelparallel $=|0\rangle|0\rangle|0\rangle+|0\rangle|0\rangle|1\rangle+|0\rangle|1\rangle|0\rangle+|0\rangle|1\rangle|1\rangle+|1\rangle|0\rangle|0\rangle+|1\rangle|0\rangle|1\rangle+|1\rangle|1\rangle|0\rangle+|1\rangle|1\rangle|1\rangle$

200 bit quantum computer: More states than atoms in universe!

 HOWEVER: Only *measure* n qubits! Use only for certain algorithms (quantum simulation, factoring, optimization?)

Operations for Quantum Computation (DiVincenzo criteria)

Classical Computation:

- Initialize state
- Logic not - - - 0 = - - - 11 = - - - 0

and
$$->0$$

 $00 -> 0$
 $01 -> 0$
 $10 -> 0$
 $11 -> 1$

- **Quantum Computation:**
- Initialize state $\Psi_i = |000..0\rangle$
- Logic via series of operations: State |0> -> |1>Manipulation |1> -> |0>(1 qubit) $|0> -> (|0>+|1>)/2^{1/2}$

- Output result
- Logic errors: Error correction possible

- Final state measurement Measure qubits of state Ψ_{f}
- Coherence:
- $\tau_{coherence} / \tau_{logic} \sim$ number logic operations > 10⁴ for error correction

Qubit Experimental Systems

Ion Trap "Atomic Clock" ions manipulated with electrodes

Superconductor

Electrical quantum states connected via wires

Use macroscopic wires to control quantum states

Couples to many defects!

Semiconductor Spin

Electron spins moves through semiconductor substrate

Superconducting Qubits

• LC oscillator (linear): no qubit possible

 Josephson junction: <u>non-linear</u> inductance with <u>1 photon</u> (low loss)

Period Table of SC Qubits

Convention: Name = encoding of state Professional Secret: = sensitivity to noise, what to avoid/fix

Tr

Qubit Coupled to Photons (Harmonic Oscillator)

atom state == ground and excited states of superconducting qubit optical cavity == standing wave in microwave transmission line

Generating non-Classical States of Light $\Psi = |0\rangle + |N\rangle$

Phase-space ("x" and "p") probabilities obtained using Wigner tomography

Red is negative quasi-probability

Spectroscopy

Protected from magnetic defects

Dielectric Loss in CVD SiO₂

Theory of Dielectric Loss

Two-level (TLS) bath: saturates at high power, decreasing loss

von Schickfus and Hunklinger, 1977

Flux bias (a.u.)

Junction Resonances: Dielectric Loss at the Nanoscale

 S_{max} in good agreement with TLS dipole moment: Charge fluctuators at ~10 GHz explain resonances

Outsourcing the Capacitor

Interdigitated C (and a-Si:H) gives lower loss

Optimistic for further dramatic improvements

- We know crystals are "superinsulators"
- How to fabricate?

Dielectric Loss from Amorphous Insulators

Dielectric Loss from Crystalline Substrates

Other dielectrics besides Si and sapphire are good candidates

Open Questions & Summary

- Although TLS (phonon loss) is well established research, little understanding of dielectric loss, correlation with materials
- TLS also produces surface inductance noise, need theory
- Other noise and non-equilibrium sources of decoherence Quasiparticles (superconductivity) Surface spin noise (2-d spin glass?) Josephson junction critical-current noise (electronic defects?)
- Qubits are a sensitive probe of defects
 - new experiments now possible