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What systems have Coulomb gap?

• Disordered systems 
of localized electrons

• Coulomb interactions 
remain unscreened

• Long-range 
correlations are 
important
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Pollak, 1970
Srinivasan, 1971
Efros & Shklovskii, 1975
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Efros-Shklovskii stability criterion
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States near the Fermi level are very sparse
in space – the density of states is depleted
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Stability criterion:
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Coulomb gap in 3, 2, and 1D

6 2

3

4

2

3D: ( )

2D: ( )

g C e

g C e

 

 









2

1

*

1D: ( )
ln /

C e
g 

 







g

0g

Baranovskii et al, 1980
Raikh & Efros, 1987
Vojta & John, 1993
Johnson & Khmelnitskii, 1996

Efros & Shklovskii, 1975
Efros, 1976

Density of states (DOS)

( 0) 0g   

in all dimensions



• AC transport
• Tunneling
• Heat capacity
• Thermopower
• Relaxation dynamics

Effect on electron properties

Reviews:
• Efros & Shklovskii, in Electron-Electron 
Interactions In Disordered Systems, 1985

• Pollak & Ortuno, ibid.
• Efros, arXiv:cond-mat/0011093

• Low-temperature DC transport

 0( ) ~ exp /T T T 

Butko et 
al. 2000

Tunneling conductance of Be film



Beyond the “simple” E-S bound

Efros, 1976
Baranovskii et al, 1980

How much does 
the ES bound 
overestimates the 
true DOS?
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Mott, 1975
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Energy can be further lowered by local 
rearrangements – “polaronic effect”

Stability condition is
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Efros, cond-mat/0011093
Mueller & Pankov, 2007



Numerical studies in 2D & 3D

Baranovskii et al. 1979; 
Davies et al. 1983; 
Levin et al. 1987; 
Moebius et al. 1992; 
Vojta et al. 1993; Li & 
Philips 1994; Pikus & 
Efros 1994; Overlin et 
al. 2004; Glatz et al. 
2008; Moebius et al. 
2009; Surer et al. 
2009; Goethe & 
Palassini 2009; Moebius
& Richter, 0908.3092; 
…

Moebius et al., 2009

Deviations from the E-S bound are a factor of 2-3 only

E-S result

Gigantic 
system 
size!
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Baranovskii et al, 1980
Raikh & Efros, 1987
Johnson & Khmelnitskii, 1996

1C 

2C 
Vojta & John, 1993

Coulomb gap in 1D

Analytical theory Simulations

Earlier numerical work:
Moebius et al. 1987
Vojta & John, 1993

1.95 0.05C  

Moebius et al. 2009
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2.18, 4

2.07, 16
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Objectives of this work

• Derive the 1D Coulomb gap rigorously
• Compare with prior mean-field theories
• Reconcile analytical and numerical 

results



E-S criterion is sufficient in 1D
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Energy can be further lowered by local 
rearrangements – “polaronic effect”

In 1D, average No. of dipoles excited is

j
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Compare w/2D and 3D: 2D 3D~ 1, ~ 1N N






Effective hard-core potential
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Stability criterion: 
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can be rewritten as

2R  
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 exp 1U    

arbitrary( ) 0, ( ) ,U r R U r R                   

where we defined the hard-core potential

The desired density of states is determined by Boltzmann weight



Mapping to a multi-component gas

Each localized state   a particle on a line of length L
Energy (discretized in some increments      )  color

Bare density of states   fugacity
0,w w g  

Grand partition function
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Same as Efros 1976, Eq.(20)

Efros 1976, Eq. (20)
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Extracting density of states
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"pressure"

"temperature"
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Example: ideal gas
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Use thermodynamic relation b/w pressure and fugacity

In general,



Mean-field theory
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If correlations are weak, then
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Virial Theorem for a 1D hard-core gas:

two-body correlation function( )G r  

1( )G r R   

Leads to the transcendental equation
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Similar equation can be derived in higher dimensions



Right thing on the first try

0( ) exp( )g g A  

This is the original self-consistent equation of Efros (1976) and 
also the BPW mean-field eq. of Vojta & John (1993)
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Solution:

Result from numerics: Moebius et al. 2009
Vojta & John, 1993
Moebius et al. 1987

Like Raikh & Efros 1987 
but with different C
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1.95 0.05C  



2nd try – “empirical correction”

SCE v1.0 (1976) SCE v2.0 (1980-)
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0( ) exp( )g g A  

Argument given: to avoid double-counting (?)

-Baranovskii, Shklovskii & Efros, 1980

Footnote: “In essence, this rule is only empirical. For example, in 

the region … where g differs little from g0 , we can use 

perturbation theory and show that the first correction to g0 , 

which follows from the SCE, is undervalued by a factor of two. 
However, at low energies the result of the SCE agrees well with 
the computer experiment.”



Why does mean-field work?

Excluded area is large:
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No obvious reason why correlations are weak…
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*Hint : the mean-field theory (that does not include 
correlations) is saved by the large log,
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Step 1: Transfer matrix
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Similar to:
Baxter, 1965

area defined by max A x L  

R

This system of equations is not closed – no exact solution
Approximate closure is provided by the RG technique

Another RG approach was proposed by Johnson & Khmelnitskii, 1996, but our results for C disagree



Step 2: Renormalization group
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After integration, we recover the SCE v1.0!
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Baranovskii et al, 1980
Raikh & Efros, 1987
Johnson & Khmelnitskii, 1996

1C 

2C 
Present work
Also: Vojta & John, 1993

Coulomb gap in 1D

Analytical theory Simulations

Earlier numerical work:
Moebius et al. 1987
Vojta & John, 1993

1.95 0.05C  

Moebius et al. 2009



Conclusions & outlook

 Classical 1D Coulomb gap problem has been solved in a 
controlled way

 The result agrees with Efros 1976, not its later revision

 Discrepancy with numerical work has been reconciled

Possible future directions

 Thermal & quantum effects:

• Finite T smears the Coulomb gap

• Classical Coulomb gap + Luttinger-liquid = ?

 Higher dimensions, d = 1 + ϵ , via ϵ-expansion

 Comparison with experiments

Mogilyanskii & Raikh 1989



Experimental probes of C-Gap

-E (eV)

g

Bechgaard salts
Zwick & al. 1997

-E (eV)

g

NaxWO3

Hollinger & al 1985

Tunneling into Al wires
White, Dynes, & Garno, 1986

• Photoemission: time to renew the efforts?

• Tunneling: most successful so far

Butko & al. 
2000

Be 
film

Difficult to 
avoid screening 
by the source 
electrode


