1D coafomp’ PV

>
Gap 1969 Jeans




* Disordered systems
of localized electrons
 Coulomb interactions
remain unscreened
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* Long-range
correlations are
iImportant
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Stability criterion:
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States near the Fermi level are very sparse
In space - the density of states is depleted



Density of states (DOS) J
3D: g(g)<C,es’
2D: g(s)<C,e™|e]

Efros & Shklovskii, 1975
Efros, 1976

1D: g(e) <

Ce”
In g*/g‘ g(¢=0)=0
L e 557 in all dimensions

Vojta & John, 1993
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 Low-temperature DC transport

J(T)~exp(—«/iO/T )

* AC transport

* Tunneling

 Heat capacity

« Thermopower

« Relaxation dynamics

Reviews:

» Efros & Shklovskii, in Electron-Electron
Interactions In Disordered Systems, 1985

 Pollak & Ortuno, ibid.

 Efros, arXiv:cond-mat/0011093

Tunneling conductance of Be film

G(V) / G(15mV)

| Butko et
0'2“ al. 2000
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o Energy can be further lowered by local

é rearrangements - “polaronic effect”
: o
| O
< 1 c E—>E _AEpol Mott, 1975
O
a2
Stability condition is &; — & ———AEpol >0

li

J‘J

T



Moebius et al., 2009 |
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Deviations from the E-S bound are a factor of 2-3 only

merical studies in 2D & 3L




Analytical theory
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Simulations
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C=1.95+0.05 B>10

Earlier numerical work: C =2.23+ 005, B=2

Moebius et al. 1987

Vojta & John, 1993 C =218, B=4
C=2.07, B=16




* Derive the 1D Coulomb gap rigorously

« Compare with prior mean-field theories

« Reconcile analytical and numerical
results
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o Energy can be further lowered by local
K rearrangements - “polaronic effect”
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Stability criterion: o g s
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can be rewritten as i & ::I:?E:::f---f ______ r
exp(—pU,,. ) =1 &' .

where we defined the hard-core potential
U.(r>R.,.)=0, U, (r<R,)=o, [=arbitrary
The desired density of states is determined by Boltzmann weight

g(E) = goexp(—Uy ), U= U,

i<j



Each localized state — a particle on a line of length L
Energy (discretized in some increments Ag) — color
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Grand partition function

zW)=>T] (Wﬁg')N H jdx g Mu

{Ng} 2 &" _1 0

Bare density of states — fugacity WgAg, W, =(,

Density of states (&) =—=£
Ag



Grand partition function

zW=>T] (Wﬁg')N H _[dx g A
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Efros 1976, Eq. (20)

Z(L) = Z]‘[jgodgk H O(A)

N} &

_ 2
A/ Egj—gi—?,—, if & <0<eg,
J



Use thermodynamic relation b/w pressure and fugacity

oy P "pressure”

£)As=n =1 = fp=L—
9() - onw, |, r=pp T  "temperature"
£~ 90

Example: ideal gas
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In general, |y = !Im Iln Z(L)




Virial Theorem for a 1D hard-core gas:
( ~ ge'
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d G_..(r) = two-body correlation function

If correlations are weak, thenG_,(r >R _,) =1 G

gg'

Leads to the transcendental equation 1

n = (W.Ag)e =R

o

g(e)=goexp(-A) A =] 2R.09(e)de
0

Similar equation can be derived in higher dimensions



g(s)=g.exp(-A) A =] 2R,g(s)de
0

This is the original self-consistent equation of Efros (1976) and
also the BPW mean-field eq. of Vojta & John (1993)

9
Solution: g(g) = 0 , C=2
2 Ex
1+Ce Jo In Like Raikh & Efros 1987
E but with different C

Result from numerics: C =1.95+0.05 e
Moebius et al. 1987




SCE v1.0 (1976) SCE v2.0 (1980-)

g(e) =g,exp(-A,) g(e) =9, eXp(_%Ag)

Argument given: to avoid double-counting (?)

Footnote: “In essence, this rule is only empirical. For example, in
the region ... where § differs little from g,, we can use

perturbation theory and show that the first correction to g,

which follows from the SCE, is undervalued by a factor of two.

However, at low energies the result of the SCE agrees well with
the computer experiment.”

-Baranovskii, Shklovskii & Efros, 1980
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Excluded area is large: o of} 0°,,°
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No obvious reason why correlations are weak...

*Hint : the mean-field theory (that does not include
correlations) is saved by the large log,
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Similar to: aLg

Baxter, 1965

This system of equations is not closed — no exact solution
Approximate closure is provided by the RG technique

Another RG approach was proposed by Johnson & Khmelnitskii, 1996, but our results for C disagree
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Z(A\AAg) — Z(A\AAA—dA,g)_(RAgdA) Z(A\AAA—AA,&‘)
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After integration, we recover the SCE v1.0!

g(e) =g,exp(-A) A = j 2R _.g(&")dég’
0



Analytical theory

C

=1

Baranovskii et al, 1980
Raikh & Efros, 1987
Johnson & Khmelnitskii, 1996

Simulations

80

C=195+0.05

Earlier numerical work:
Moebius et al. 1987
Vojta & John, 1993



= Classical 1D Coulomb gap problem has been solved in a
controlled way

= The result agrees with Efros 1976, not its later revision

= Discrepancy with numerical work has been reconciled

Possible future directions

= Thermal & quantum effects:
 Finite T smears the Coulomb gap  Mogilyanskii & Raikh 1989
 Classical Coulomb gap + Luttinger-liquid = ?

= Higher dimensions, d =1 + ¢, Vvia e-expansion

= Comparison with experiments
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Tunneling into Al wires
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emission: time to renew the efforts?
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