Electron transport via two-dimensional array
of tunnel-coupled quantum dots

Natalia Stepina
Institute of Semiconductor Physics, Novosibirsk, Russia

Outline:
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© Photo-conductance mesoscopic fluctuations
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conductivity along two-dimensional QDs layer



INSTITUTE OF SEMICONDUCTOR PHYSICS, SIBERIAN BRANCH
OF THE RUSSIAN ACADEMY OF SCIENCE
Struct der investigati

200 nm Si Ge QD S8ML

N /3
~

o~ exp[-(T,/T) 12

B-doped
o-layer

200 nm Si




Conductance (ez/h)

10_7 " 1 " 1 " 1 " 1 " 1 " 1
0,00 0,05 0,10 0,15 0,20 0,25 0,30

Conductance (e2/h)

INSTITUTE OF SEMICONDUCTOR PHYSICS, SIBERIAN BRANCH

OF THE RUSSIAN ACADEMY OF SCIENCE
I L

Hole hopping
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Analysis of reduced activation energy

G(T) = 7" exp|- (7 /T

w(l)=dInG/InT W(T)=m+x(T,/T)"*
Inw({#)=A4A—xInT

m << x(T, / T)*

Non-monotonic dependence of hopping conductance on
density of state is a characteristic feature of QDs.
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Variable-range hopping
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Screening of Coulomb interaction
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Localization radiusin
disordered system
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I
L= w determines the MIT transition

( 1 - overlap integral, W — the disorder level)

Wave function envelope for QD array
Wave functions of carriers

Wave function envelope for single QD \

Potential created by QDs array




| ocalization behaviours

Strong localization ¢ << L, Hopping transport
Intermediate regime G~ Ly edess

. Diffusion transport
Weak localization G >> Lco 3 P

with quantum corrections



The ways to change disorder and interaction

1. Increase of the QDs array density - to enhance the hopping integral / and the interaction without

significant change of W

QDs density ~4x10!'! cm QDs density 81011 cm-2

Filling factor v~1.9, 2, 2.1 .
Annealing 480. 550. 575. 600 1 625°C Filling tactor ViElSSEE

AR

HTREM image of QDs array with density STM image of QDs array with density ~
~4-10!1 cm -2 8x10!1 cm -2 (200%200 nm)
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The ways to change disorder and interaction

2. Change the QDs size and composition at annealing- to enhance the overlap of carrier wave
functions without seriously effecting the e-e interaction :
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3. Control the filling factor — in opposite way to change interaction and hopping integral
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Experimental results

1.

Temperature dependence of conductivity
(in the frame of hopping transport)

Samples without annealing
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Experimental results

1. Temperature dependence of conductivity
(in the frame of diffusive transport)

DD samples, different v
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The methods of the transport behaviour analysis

3. Checking of the scaling theory
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dinL
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Experimental results

3. Checking of the scaling theory
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Two-parameter scaling

Sfunction
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Conductance (rel.units)
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Sign-dependent photoconductance

PC in samples with QDs
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| nterband illumination
of samplewith v= 1.5
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Conductance relaxation under high field excitation
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- Glassy behavior can be obtained even in
system without interaction due to the
exponential dependence of the transition rates

w on hopping length:
w=w, exp(-x) x=2r/E+e/kTl;

AG (1) o< In( W, 1)
- Interactions may further enhance

the glassiness of the system

[M.Pollak et al. Phys. Rev. B 59, 5328
(1999) ]



Conductance (arb. units)
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Relaxation law
F(t) = Aexp[—(t/7)"]
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Conductance (arb.units)
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Distribution function
F(t) = [N(w)e "dw

1.Statistical distribution of the relaxation rates w, parallel relaxation channels

N(w) —distribution function of the transition rates

Inverse Laplace transformation of the relaxation law

the interaction removes some
of the transition events over

almost all experimental time
range

N(w), Ohm's




Mesoscopic structures with QDs
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—~— Channel size ~70-500 nm

We present the experimental results of photo-induced conductance fluctuations in
nanometer size QDs structures with different width and length of conductance
channels under small flux of infrared illumination.



Photoconductance fluctuations
IN mesoscopic structures

4x10™° F

@ |

Q

O L

s

(av]

‘g i

o

=

(@)

O I - - - -
Redistribution of the carriers
between different QDs inder illumination

16 17 18 19 20 21
Time (hours) new potential landscape —> new
conductive path providing change
Photoconductance kinetics for meso- (b)  of the conductance with time.
and macroscopic (a) samples.



Effect of different structure size and geometry
on photoconductance kinetics
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The method of experimental fluctuation treatment
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Dependence of counts on light intensity
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Linear dependence of counts on light intensity —
as expected for a single-photon process



Conclusion

1.The electron transport in QD array is described by VRH with Coulomb gap.

2. Screening of interaction leads to a the transition to Mott transport; “m” changed from m~0 to m=-1.

3. Conductance and localization radius are strongly and non-monotonously depend on hole number.

4. The crossover from strong to weak localization in the massive of QDs has been observed at the
variation of the filling factor of dots with holes and QDs array density, and also after samples
annealing allows to change the QDs sizes and composition.

5. It was shown that the system state describes by the single-parametric scaling hypothesis for the
samples with small variation of interaction. From the asymptotics of the universal function, the
bounds separating the diffusive G > o,4é and hopping (¢ <102 ik ) regimes were established.

6. PC with sigh depending on initial hol® filling factor was observed. Kinetics of the PC has
anomalous slow behavior.

7. The relaxation under high field excitation is slowed down in the presence of Coulomb interaction.

8. Mesoscopic behavior in conductance was observed under light illumination of samples with
channel size 70-500 nm.

9.The amplitude and number of conductance fluctuations depend on size and geometry of the
conductive channel.

10.The number of counts is linearly changes with light intensity as it expected for single-photon
process
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