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Motivation I
Memory dip in electron glasses after change of gate voltage

M. Ben-Chorin et al., PRL 84, 3402 (2000)



Motivation I

M. Ben-Chorin et al., PRL 84, 3402 (2000)

What happens actually, as new 
electrons come into the sample?

Or - what happens after P. Armitage’s
or D. Popovic’s excitations?       

(cf. yesterday’s talks)

Memory dip in electron glasses after change of gate voltage



II. Charging a glassy capacitor

D. Monroe et al.,
PRL 59, 1148 (1987)

Introducing charge in a strongly insulating Coulomb glass



II. Charging a glassy capacitor

D. Monroe et al.,
PRL 59, 1148 (1987)

Introducing charge in a strongly insulating Coulomb glass

Injection from leads (or better from a tunnel tip) and …



II. Charging a glassy capacitor

D. Monroe et al.,
PRL 59, 1148 (1987)

Introducing charge in a strongly insulating Coulomb glass

… avalanche-like relaxation, or “crackling”.

A.k.a. “non-linear screening” (Baranovskii, Shklovskii, Efros 1984)



Outline
• Crackling, avalanches, “shocks” in

disordered, non-linear systems; 
Self-organized criticality 

• Avalanches in the magnetizing process
(“Barkhausen noise”)

• The criticality of spin glasses at equilibrium –
why to expect scale free avalanches

• Magnetization avalanches in the Sherrington-
Kirkpatrick spin glass – an analytical study.

• Applications/perspectives: Finite dimensions, 
electron glasses, avalanches in quantum systems



Crackling
Crackling = Response to a slow driving which occurs 
in a discrete set of avalanches, spanning a wide range of sizes.

Occurs often but not necessarily out of equilibrium.

Examples: 

• Earthquakes
• Crumpling paper
• Charging an electron glass (presumably)
• Disordered magnet in a changing external field magnetizes in a series of jumps

Review: Sethna, 
Dahmen, Myers,
Nature 410, 242 (2001).
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But: Not everything crackles! 
Intermediate between snapping (e.g., twigs, chalk, weakly disordered 
ferromagnets, nucleation in clean systems) 
and popping (e.g., popcorn, strongly disordered ferromagnets)
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Crackling
Crackling = Response to a slow driving which occurs 
in a discrete set of avalanches, spanning a wide range of sizes.

Occurs often but not necessarily out of equilibrium.

Examples: 

• Earthquakes
• Crumpling paper
• Charging an electron glass (presumably)
• Disordered magnet in a changing external field magnetizes in a series of jumps

But: Not everything crackles! 
Intermediate between snapping (e.g., twigs, chalk, weakly disordered 
ferromagnets, nucleation in clean systems) 
and popping (e.g., popcorn, strongly disordered ferromagnets)

Review: Sethna, 
Dahmen, Myers,
Nature 410, 242 (2001).

Crackling on all scales – generally signature of a critical state in driven, 
non-linear systems. → Can be an interesting diagnostic tool.



Examples of crackling I
• Depinning of contact lines, interfaces and other elastic objects

Liquid fronts, domain walls, charge density waves, vortex lattices:



Examples of crackling I
• Depinning of contact lines, interfaces and other elastic objects

Liquid fronts, domain walls, charge density waves, vortex lattices:

Statistics of avalanches: non-trivial scale-free power laws

Theoretical approach: functional RG [D. Fisher, Balents, LeDoussal+Wiese, 
etc]



Examples of crackling II
• Power laws due to self-organized criticality:

Dynamics is attracted to a critical state, without fine-tuning of parameters

Example: sandpile model by Bak, Tang, and Wiesenfeld



Magnetic systems

• Crackling noise in the hysteresis loop: “Barkhausen noise”

• When does crackling occur in random magnets, and why?



Magnetic systems

• Crackling noise in the hysteresis loop: “Barkhausen noise”

• When does crackling occur in random magnets, and why?

This talk: 
Equilibrium avalanches in hysteresis reflect criticality of 
glassy magnetic phases! 

Experimental proposal: 
Barkhausen noise as a diagnostic of glasses!



Avalanches in ferromagnetic films
Direct Observation of Barkhausen Avalanche in (ferro) Co Thin Films

Kim, Choe, and Shin (PRL 2003)

P s( ) =
A
sτ

   τ =
4
3

Distribution of 
magnetization jumps

Cizeau et al.:
Theoretical model with 
dipolar long range 
interactions
(crucial to get criticality) 



Model ferromagnets

Random field Ising model (short range):

• Generically non-critical
• Scale free avalanches require fine tuning of disorder
and field

Δ = hi
2

hext ,crit

Dahmen, Sethna
Vives, Planes

H = −J sis j −
<ij >
∑ hisi −

i
∑ hext si

i
∑

Reason: not enough frustration, no glassy phase!

→ Look at spin glasses



Mean field spin glass

Canonical spin glass model: Sherrington-Kirkpatrick (SK) model - fully connected 

H =
1
2

Jijsis j − hext si
i
∑

i, j
∑ ,      Jij :  random Gaussian Jij

2 = J 2 N

• Mean field version of the Edwards-Anderson model in finite dimensions
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Canonical spin glass model: Sherrington-Kirkpatrick (SK) model - fully connected 

H =
1
2

Jijsis j − hext si
i
∑

i, j
∑ ,      Jij :  random Gaussian Jij

2 = J 2 N
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Mean field spin glass

Canonical spin glass model: Sherrington-Kirkpatrick (SK) model - fully connected 

Glass phase is always [self-organized] critical!  (SK: Kondor-DeDominicis) 
Power law correlations also in the droplet model! (Fisher-Huse)

H =
1
2

Jijsis j − hext si
i
∑

i, j
∑ ,      Jij :  random Gaussian Jij

2 = J 2 N

• Mean field version of the Edwards-Anderson model in finite dimensions
• Known facts:
- Thermodynamic transition at Tc to glass phase: 
- Mtot = 0, despite of broken Ising symmetry: <si> ≠ 0, 
- Order parameter
- Many metastable states

QEA =
1
N

si
2

i∑



SK criticality – local fields
H =

1
2

Jijsis j − hext si
i
∑

i, j
∑

Thouless, Anderson and Palmer (1977) 
Palmer and Pond (1979)
Parisi (1979)
Bray, Moore (1980)
Sommers and Dupont (1984)
Dobrosavljevic, Pastor (1999)
Pazmandi, Zarand, Zimanyi (1999)
MM, Pankov (2007) 

 
λi ≡ −

∂H
∂si

= − Jijs j + hext
j≠ i
∑

Linear “Coulomb” gap in the 
distribution of local fields

(analogous to Efros-Shklovskii
Coulomb gap, 1975)

A first indication of criticality!

Local field on spin i:



The linear pseudogap in SK
Thouless (1977)

The distribution of local fields must vanish at 
λ=0 at T = 0!

Stability of ground state with respect to flipping of a pair: 

• Suppose pseudogap P λ( )∝ λγ

γ ≥ 1 → At least linear pseudogap!

→ Smallest local fields λmin ∝ N−1 1+γ

λ1 λ2

NJ 1~12

• 2-spin flip cost Ecos t ∝ λ1 + λ2 − N−1 2   ~   N−1 1+γ − N−1 2   >
!
  0



The linear pseudogap in SK
Stability of ground state with respect to flipping of a pair: 

• Suppose pseudogap P λ( )∝ λγ

λmin ∝ N−1 1+γ→ Smallest local fields 

λ1 λ2

NJ 1~12

• 2-spin flip cost Ecos t ∝ λ1 + λ2 − N−1 2   ~   N−1 1+γ − N−1 2   >
!
  0

• But: γ = 1! → marginally stable!
Largest possible density of soft spins!

Distribution is critical: flipping one spin 
by an increase of                     can trigger  
large avalanche!

Δhext = λmin

Thouless (1977)

The distribution of local fields must vanish at 
λ=0 at T = 0!

γ ≥ 1 → At least linear pseudogap!



“Living on the edge”

Size distribution of avalanches:

• Avalanches are large:
Only cutoff : system size N

S = ΔM  ~  N1/2

and   
Nflip ~ N    [!]

• Power laws:
Indication of self-organized criticality

Pazmandi, Zarand, Zimanyi (1999)
Numerical analysis of hysteresis in the SK model



“Living on the edge”

Size distribution of avalanches:

• Avalanches are large:
Only cutoff : system size N

S = ΔM  ~  N1/2

and   
Nflip ~ N    [!]

• Power laws:
Indication of self-organized criticality

• Nearly random up and down flips!

• Typical spins flip ~ N1/2 times back and   
forth during a hysteresis loop!

Pazmandi, Zarand, Zimanyi (1999)

Theory??

Numerical analysis of hysteresis in the SK model



Criticality of the SK model
SK-model 

Parisi ansatz for the saddle point:
Hierarchical replica symmetry breaking 

=abQ

Parisi (1979)

H = Jijsis j
i< j
∑

Replica trick: F = ext
Q

F Qab{ }⎡⎣ ⎤⎦        Qab =
1
N

si
asi

b

i
∑



Criticality of the SK model
SK-model 

Parisi ansatz for the saddle point:
Hierarchical replica symmetry breaking 

=abQ

Parisi (1979)

H = Jijsis j
i< j
∑

Replica trick: F = ext
Q

F Qab{ }⎡⎣ ⎤⎦        Qab =
1
N

si
asi

b

i
∑

Zero modes of stability matrix Criticality of the glass: ∂2F
∂Qab∂Qcd

• Critical spin-spin correlations in the whole glass 
phase! 
Numerically also found in finite dimensions 
(also in the droplet model)!

• Criticality is directly related to the linear pseudogap in P(h)!
(Sommers-Dupont, Pankov)



Avalanches?

• Understand shocks in spin glasses

• Calculate equilibrium avalanche distribution analytically 

• → Power law - a consequence of thermodynamic criticality



Stepwise response and shocks in 
spin glass models 

m

Fα h( )= Fα h = 0( )− hMα

Equilibrium jump/shock when two states cross: Fα hshock( )= Fβ hshock( )

Mesoscopic effect: Susceptibility has spikes and does not self-average!

Free energy of metastable state α:

Young, Kirkpatrick 1982, Krzakala, Martin (2003)



Stepwise response and shocks in 
spin glass models 

m

Fα h( )= Fα h = 0( )− hMα

Equilibrium jump/shock when two states cross: Fα hshock( )= Fβ hshock( )

Mesoscopic effect: Susceptibility has spikes and does not self-average!

Free energy of metastable state α:

Yoshino, Rizzo (2008)First steps of theory in p-spin models 
[physics similar as in supercooled liquids]
→ Glassy, but much simpler than SK and non-critical

Young, Kirkpatrick 1982, Krzakala, Martin (2003)



How to detect avalanches

2nd cumulant of the magnetization (T = 0) Yoshino, Rizzo (2008)

Non-analytic cusp!
Reflects the probability of shocks.



How to detect avalanches

2nd cumulant of the magnetization (T = 0) Yoshino, Rizzo (2008)

Non-analytic cusp!
Reflects the probability of shocks.

Elastic analogue:

For experts: Shocks are direct analogs of the cusp in 
the FRG beyond the collective pinning scale

Larkin, Fisher
LeDoussal, Wiese
Balents, Bouchaud, Mézard
LeDoussal, MM, Wiese



How to obtain shocks 
and their distribution 

for the SK model?



Strategy of calculation
kth cumulant of magnetization difference

Shock density

Avalanche size cumulants
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Avalanche size cumulants

Calculate



Strategy of calculation
kth cumulant of magnetization difference

Shock density

Avalanche size cumulants

Calculate

Natural scales: Distance between shocks

Magnetization jumps



Strategy of calculation
Calculate

Calculate effective potential of n replicas:



Strategy of calculation
Calculate

Calculate effective potential of n replicas: Easy to extract in the 
replica limit n → 0

Extract non-analytic part ~|dh| in the limit T → 0
… … … …



Strategy of calculation
Calculate

Calculate effective potential of n replicas: Easy to extract in the 
replica limit n → 0

Extract non-analytic part ~|dh| in the limit T → 0

Final result: (for any mean field glass) 

Equilibrium saddle point T-1/(dQ/du)

… … … …



Calculation
Result for SK spin glass

Avalanche exponent
τ = 1

Zero T solution of the 
SK model, and its 
marginal stability!



Calculation
Result for SK spin glass

Avalanche exponent
τ = 1

q12 =
1
N
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1si

2

i
∑Overlap:

Superposition from all 
“distances” (0 < 1-q <1)
produces a power law!

Zero T solution of the 
SK model, and its 
marginal stability!



Calculation
Result for SK spin glass

• Mesoscopic avalanches ~ N1/2 fully confirmed
• Critical probability distribution of avalanche sizes

Avalanche exponent
τ = 1

q12 =
1
N

si
1si

2

i
∑Overlap:

Superposition from all 
“distances” (0 < 1-q <1)
produces a power law!

Zero T solution of the 
SK model, and its 
marginal stability!



Calculation
Result for SK spin glass

Superposition from all 
“distances” (0 < 1-q <1)
produces a power law!

Avalanches in the hysteresis loop 
(slowly driven, out-of-equilibrium)

Pazmandi, Zarand, Zimanyi (1999)

Log(δm)

Zero T solution of the 
SK model, and its 
marginal stability!



A posteriori: a simple derivation !

A heuristic derivation/interpretation – a posteriori



A posteriori: a simple derivation !

Nflip = N 1− q( ) 2

Δm2 = ΔM 2 N = 4 Nflip N = 2 1 − q( )

ρ E = 0,q( )=
1
T

P(q) =
1
T

du
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≡
dû
dq

Density of states at distance 1-q

Relation between jump in q and M

Shock location: Δ %h = N Δh = E ΔM

A heuristic derivation/interpretation – a posteriori
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A posteriori: a simple derivation !

Nflip = N 1 − q( ) 2

Δm2 = ΔM 2 N = 4 Nflip N = 2 1 − q( )

ρ E = 0,q( )=
1
T

P(q) =
1
T

du
dq

≡
dû
dq

Density of states at distance 1-q

Relation between jump in q and M

Shock location:

A heuristic derivation/interpretation – a posteriori

Distribution of jump in m AND number of flipping spins:

Δ %h = N Δh = E ΔM

Static calculation yields same power laws as out-of-eq. dynamics!



Nature of avalanches
T=0 dynamics (numerical)

S:=Δm N1/2

T=0 statics (analytical)

Possible reason for similarity: 
Statics and dynamics are closely related in marginal glasses, such as SK 



Applications and extensions



Finite dimensions

Analogous argument as above for droplets in finite dimensions:

Assuming droplet picture (with critical power law correlations)

Avalanche exponent

Droplet magnetization
Droplet energy

Droplet fractal dimension  df

Power law! With:

New exponent relation! 



Avalanches in the classical 
Coulomb glass
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Avalanches in the classical 
Coulomb glass

Add one particle on a given site: ni: 0 → 1
→ Trigger avalanche of “non-linear screening events”
At T=0: no screening → easy to show: at least O(L) induced jumps
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Avalanches in the classical 
Coulomb glass

Add one particle on a given site: ni: 0 → 1
→ Trigger avalanche of “non-linear screening events”
At T=0: no screening → easy to show: at least O(L) induced jumps

Locator approximation predicts critical glass state

→ Expect power law distribution with cutoff ~ min(1/T, L)

  
H =

1
2

ni

e2

rij

nj
i≠ j
∑ + niε i

i
∑

Müller, Ioffe 04
Pankov, Dobrosavljevic 04
Müller, Pankov 07



Physical realization of the 
(quantum) SK model 

in quantum critical electron 
glasses?!

(Müller, Ioffe 07)



Quantum electron glasses: close to 
metal-insulator-criticality

Electrons in localization volume behave like a quantum SK model

Adding a charge → avalanches (polarons): affect transport and relaxations. 
Static shocks: Rounding of shocks by tunneling! 
→ Extract transition rates, avoided level crossing, etc etc…

First step: full solution of quantum SK (Andreanov, Müller in preparation)

(Müller, Ioffe 07)

δ ≡ δξ

J ≡
e2

κξ
J ? δ



Conclusion

Spin glass criticality (in the SK model) → scale free 
response to a slow magnetic field change.

Connection between manifestations of criticality:
Soft “Coulomb” gap – avalanches –

algebraic spin-spin correlations

Similar effects expected for electron glasses

Avalanches in Barkhausen noise, fast charge relaxation: 
An interesting experimental diagnostic for spin glass criticality?!
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