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Motivation |

Memory dip in electron glasses after change of gate voltage
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Or - what happens after P. Armitage’s
or D. Popovic's excitations?
(cf. yesterday’ s talks)
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Gate

Injection from leads (or better from atunnel tip) and ...
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... avalanche-like relaxation, or “ crackling”.

A .k.a “non-linear screening” (Baranovskii, Shklovskii, Efros 1984)



Outline

 Crackling, avalanches, “shocks’ Iin
disordered, non-linear systems;
Self-organized criticality

» Avalanches in the magnetizing process
(“Barkhausen noise”)

 The criticality of spin glasses at equilibrium —
why to expect scale free avalanches

e Magnetization avalanches in the Sherrington-
Kirkpatrick spin glass— an analytical study.

 Applications/perspectives. Finite dimensions,
el ectron glasses, avalanches in guantum systems



| Review: Sethna,
Nature 410, 242 (2001).
Crackling = Response to a slow driving which occurs

In adiscrete set of avalanches, spanning awide range of sizes.

Occurs often but not necessarily out of equilibrium.

Examples:

 Earthquakes

» Crumpling paper

 Charging an electron glass (presumably)

* Disordered magnet in a changing external field magnetizes in a series of jumps
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Crackling Datrren, Myers

Nature 410, 242 (2001).

Crackling = Response to a slow driving which occurs
In adiscrete set of avalanches, spanning awide range of sizes.

Occurs often but not necessarily out of equilibrium.

Examples:

 Earthquakes

» Crumpling paper

 Charging an electron glass (presumably)

* Disordered magnet in a changing external field magnetizes in a series of jumps

| ntermedi ate between snapping (e.g., twigs, chalk, weakly disordered
ferromagnets, nucleation in clean systems)
and popping (e.g., popcorn, strongly disordered ferromagnets)

Crackling on all scales — generally signature of acritical state in driven,
non-linear systems. — Can be an interesting diagnostic tool.




Examples of crackling |

Liquid fronts, domain walls, charge density waves, vortex |attices:
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Examples of crackling |

Liquid fronts, domain walls, charge density waves, vortex |attices:

pux) - 0o

t..-l-h

Theoretical approach: functional RG [D. Fisher, Balents, LeDoussal+Wiese,
etc]

Statistics of avalanches: non-trivial scale-free power laws




Examples of crackling ||

* Power laws due to self-organized criticality:
Dynamics s attracted to a critical state, without fine-tuning of parameters

Example: sandpile model by Bak, Tang, and Wiesenfeld

|

log avalanche
frequency N

log avalanche size =—————>



Magnetic systems

 Crackling noise in the hysteresis loop: “ Barkhausen noise”

 \When does crackling occur in random magnets, and why?



Magnetic systems

 Crackling noise in the hysteresis loop: “ Barkhausen noise”

 \When does crackling occur in random magnets, and why?

Thistalk:
Equilibrium avalanches in hysteresis reflect criticality of
glassy magnetic phases!

Experimental proposal:
Barkhausen noise as a diagnhostic of glasses!



Avalanches in ferromagnetic films

Direct Observation of Barkhausen Avalanche in (ferro) Co Thin Films
Kim, Choe, and Shin (PRL 2003)
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Model ferromagnets

Dahmen, Sethna
Vives, Planes

(short range):

H=-32 55 -2.hs . 2.5

<ij> i

e Generically non-critical
 Scale free avalanches require fine tuning of disorder A = <hi2>
and field Ny,

Reason: not enough frustration, no glassy phase!

— Look at spin glasses




Mean field spin glass

VOLUME 83. NUMBER 5 PHYSICAL REVIEW LETTERS 2 AUGUST 1999

Self-Organized Criticality in the Hvsteresis of the Sherrington-Kirkpatrick Model

Ferenc Pazmandi.!>* Gergely Zarand.! and Gergely T. Zimanyi'

1 . =3
H :EZJUSS] -h,>.s, J;: random Gaussian J; = J?/N
i i

 Mean field version of the Edwards-Anderson model in finite dimensions
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* Mean field version of the Edwards-Anderson mode! in finite dimensions
* Known facts:

- Thermodynamic transition at T to glass phase:

- M, = O, despite of broken Ising symmetry: <s> # 0,

- Order parameter  Q, = %Zi(s,)z
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Mean field spin glass

VOLUME 83. NUMBER 5 PHYSICAL REVIEW LETTERS 2 AUGUST 1999

Self-Organized Criticality in the Hvsteresis of the Sherrington-Kirkpatrick Model

Ferenc Pazmandi.!>* Gergely Zarand.! and Gergely T. Zimanyi'

1 . =3
H :EZJUSS] -h,>.s, J;: random Gaussian J; = J?/N
i i

» Mean field version of the Edwards-Anderson model in finite dimensions
* Known facts:

- Thermodynamic transition at T to glass phase:

- M, = O, despite of broken Ising symmetry: <s> # 0,

- Order parameter Q. = iZi(s,)z

- Many metastable states 'V

Glass phase is always [self-organized] critical! (SK: Kondor-DeDominicis)
Power law correlations also in the droplet model! (Fisher-Huse)



SK criticality — local fields

1 Thouless, Anderson and Palmer (1977)
_ = N Palmer and Pond (1979)
e 2 .Z J;58; — Neg Z . Parisi (1979)
& Bray, Moore (1980)
Sommers and Dupont (1984)
Dobrosavljevic, Pastor (1999)
Pazmandi, Zarand, Zimanyi (1999)

IH MM, Pankov (2007)
=——=->Js+h
I asl o 1] ) ext
0.8 i :
Linear “Coulomb” gap inthe
05 L _—  distribution of local fields
. (analogous to Efros-Shklovskii
§ 04 Hoo 0z 002 008 008 Coulomb gap, 1975)
17N
0.2 A first indication of criticality!

0.0 1.0 2.0 3.0 4.0 5.0



The linear pseudogap in SK

Thouless (1977)
Stability of ground state with respect to flipping of a pair:
The distribution of local fields must vanish a 3o ~YIN
A=0atT=0! ,F ''''''''''' :l,
A

* Suppose pseudogap P(1)e< A7 %
— Smallest local fields A, o N7
+ 2-spin flip cost E_ oA +|4]|-N# ~ N¥7_N¥2 5 0

Y 21— Atleast linear pseudogap!




The linear pseudogap in SK

Thouless (1977)
Stability of ground state with respect to flipping of a pair:
The distribution of local fields must vanish a 3o ~YIN
A=QaT=00 0 | | Il,
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log(P(5))

log(D(n))

“Living on the edge’

Pazmandi, Zarand, Zimanyi (1999)

= om| Size distribution of avalanches:
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“Living on the edge’

Pazmandi, Zarand, Zimanyi (1999)

log(P(5))

logipis)}

.00 ——ﬁ\ Size distribution of avalanches;

"5 005 g0  Avalanches are large:
am ) .
Only cutoff : system size N

log(D(n))

S=AM ~ N2
. and
—_iEL “er | % — Nflip ~N []
=7 ; « Power laws:
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g, 2520 -15-10-05 04
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Indication of self-organized criticality
* Nearly random up and down flips!

R B b  Typical spinsflip ~ NY2times back and
1.0 1.5 2.0 2.5 3.0

log(n), [l0g(S)] forth during a hysteresis loop!
Theory??



Criticality of the SK model
H :ZJijssj
F=ext| F{Q, }] @w%ZS’"&b

Paris ansatz for the saddle point: Q. =
Hierarchical replica symmetry breaking 2s

Parisi (1979)



Criticality of the SK model

H=>Jss

i<]j

1 b
F=et[F{Qu}] Qu=12.5'

Paris ansatz for the saddle point: Q. =
Hierarchical replica symmetry breaking 2s
Parisi (1979)
Zero modes of stability matrix J°F
aQaband

* Critical spin-spin correlations in the whole glass
phase!
Numerically aso found in finite dimensions
(also in the droplet model)!

o Criticality isdirectly related to the linear pseudogap in P(h)!
(Sommers-Dupont, Pankov)



Avaanches?

e Understand shocks in spin glasses
 Calculate equilibrium avalanche distribution analytically

 — Power law - a consequence of thermodynamic criticality



Stepwise response and shocks In

spin glass models

Young, Kirkpatrick 1982, Krzakala, Martin (2003)

Free energy of metastable state : F, (h)=F,(h=0)-hM,,
Equilibrium jump/shock when two states cross:  F, (goq )= Fs (Ngos )
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-1 -0.5 0 0.5 1 1.5

h h
Mesoscopic effect: Susceptibility has spikes and does not self-average!



Stepwise response and shocks In
spin glass models

Young, Kirkpatrick 1982, Krzakala, Martin (2003)

Free energy of metastable state : F, (h)=F,(h=0)-hM,,
Equilibrium jump/shock when two states cross:  F, (goq )= Fs (Ngos )

2 L] T T T 20 5
a)

o
X

. free-energy
tn =

Lh
—
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0 -15

-1 05 0 OI.S l 1.5

h h
Mesoscopic effect: Susceptibility has spikes and does not self-average!
Yoshino, Rizzo (2008)

[physics similar asin supercooled liquids]
— Glassy, but much simpler than SK and non-critical



How to detect avalanches

(T=0) Yoshino, Rizzo (2008)

M(h + 6h)M(h — 6h) — M(h)2 « |8h|

Non-analytic cusp! /

Reflects the probability of shocks.



How to detect avalanches

(T=0) Yoshino, Rizzo (2008)

M (I + 6h)M (h — o) — M(h)2 x |8h|

Non-analytic cusp! /

Reflects the probability of shocks.

V(L,I'I"Uf) degenerate VEH( LI)
states

"shock” U
) ] Larkin, Fisher
For experts: Shocks are direct analogs of thecuspin | eboussal, Wiese
the FRG beyond the collective pinning scale Balents, Bouchaud, Mézard

LeDoussal, MM, Wiese



How to obtain shocks
and thelr distribution
for the SK model ?



Strategy of calculation

kth cumulant of magnetization difference

[M (k) — M(h + 0h)JF = Prob(shock € [h, h+ 6h]) AME " + O (6h2)

Shock density
Prob(shock € |h, h + dh|) = po|dh|

Avalanche size cumulants

o0
AME = / d AM P(AM;h) AM*
0
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Strategy of calculation

kth cumulant of magnetization difference

[M (k) — M(h + 0h)JF = Prob(shock € [h, h+ 6h]) AME " + O (6h2)

Shock density
Prob(shock € [h, h + dh]) :.|5h|

Avalanche size cumulants

h 0‘0
AME = f dAM AM*
0

—> Cdculate  [M(h) — M(h + éR)]* *l

Sh ~ Ain ~ N~1/2 Distance between shocks
AM ~ yNAh ~ N/ Magnetization jumps

Natural scales:;



Strategy of calculation

— Calculate  [M(h) — M(h + oR)F %l

M(hy)...M(hi) = (=1)%0y, ...0n, F(h1) ... F(hg)

—» Calculate effective potential of n replicas:



Strategy of calculation

— Calculate  [M(h) — M(h + oR)F 4»'

M(hy)...M(hi) = (=1)%0y, ...0n, F(h1) ... F(hg)

—> Calculate effective potential of n replicas. Easy to extract in the
! eplicalimit n— 0

exp [W[{ha}]] 1= exp :—-SiF(hﬂ)]

a=1

= Exp _ ﬂZF{:hu} + E F(ha:}F(-‘rlb)Jﬁc - IS_:: F(ha)F{hb)F(hc}ic"' ]
a,b=1 3! a.b,e=1
— Z /H dQap Hexp [nN + g?J? Z (—%Qib + Qa,,sgsg) + ;ﬁhnS;].

{Si}" a#b a#h

—> Extract non-analytic part ~|dh| in the limit T —0



Strategy of calculation

—> Caculate  [M(h) — M(h + oh)JF *’l

M(hy)...M(hi) = (=1)%0y, ...0n, F(h1) ... F(hg)

—» Calculate effective potential of n replicas: Easy to extract in the
N J eplicalimit n—0
exp [W’[{hﬂ}]] = exp —,SZF(ILH)]
) a=1
IB — J,c .53 - J,c
= exp —ﬁZF(hu +5 > Fla)F(h) -5 F(ha)F(hy)F (he) +]
) a,b=1 Cabe=1
16 2 72 N 2 [ el i
> / ITdQus Hexp |:HN + 8202 (—EQQ,, - Qﬂbsﬂsb) +Zﬁhﬂsa].
{Si}" a#b a#b a

—> Extract non-analytic part ~|dh| in the limit T —0
Final result: (for any mean field glass)

altie) d'br( )EXP[_cl(q(uc) q)]
W 44 /an(quc) — q)
Equilibrium saddle point T-1/(dQ/du)

d(Am)dh.

o(Am) d(Am)dh = Am f



Calculation

Result for SK spin glass A

du( )E}{p[ 4( (’Hc}—ﬁ')] d & dh
dg__\/4m(q(uc) - q) (A

d(Am)dh

N q(uc)
p(Am)d(Am)dh = &m/ dq

q(0)
1
Zero T solution of the Am [:: 2/
SK modd, and its

marginal stability! _ ;’:T exp[—(Am)?/4(1 — CF

—2/3

)]



Calculation

Result for SK spin glass

. q(uc) exp|— grorl
p(Am) d(Am)dh = Am f FRCLC) ) *”] d(Am)dh.
a(0) dg__ /47 (q(uc) — q)
Zero T solution of th Am f I EXP[_“?]T‘}”]d(am)d};
ero T solution of the = > Tl —a)
SK model, and its \/Tfh =)
marginal stability! — - M"Tcxp[ (Am)2/4(1 — CR™)]
plAm)

Superposition from all
“distances’ (0<1-q<1)
produces a power law!

10}

Overlap: q,, = Z 'S’

o1f

- ,—"/ 1 \ 1 I'. | I" \ | 1 II'- I'\ L I'\
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Calculation

Result for SK spin glass A

du( )E}{p[ 4 Q(uc}—Q)] d & dh
dg__\/4m(q(uc) — q) (A

- q(ue)
p(Am)d(Am)dh = Am/ dq
(0)

! exp[— iﬁ[ff:;] | -~
Zero T solution of the = Am f > d(Am)dh
2 Var(1 —
SK model, and its *ff (1=
marginal stability! = VLT exp[—(Am)?/4(1 — CR)]

Am

plAm)
100

Superposition from all
“distances’ (0<1-q<1)
produces a power law!

10}

Overlap: q,, = Z 'S’

01 ___.,..-:'./._! _—

Am

001 005 0.10 O:JO 100 .

 Mesoscopic avalanches ~ NY2 fully confirmed
e Critical probability distribution of avalanche sizes



Calculation

Result for SK spin glass
- q(uc)
p(Am)d(Am)dh = Am/ dq
(0)

&m
du( )E}{p[ 4( (Hc}—ﬁ')] d(&m)dh

dg__ /4 (q(uc) — q)

Zero T solution of th A f | ex,«—p[_iﬁﬂ]] d(Am)dh
ero T solutionof the = am | _,, ol =
SK model, and its X/Tff =)
marginal stability! — - ;m"'f exp[—(Am)?/4(1 — CR'™)]
o) <—> Avaanchesin the hysteresis loop

10l “distances’ (0< 1-q<1) |

produces a power law! 10 b

1L i
3 & 2.0
o g -30
- AN ENEEREY A -4.0

0.01 005 0.10 050 1.00

=5.0

Log(d m)
Pazmandi, Zarand, Zimanyi (1999)



A posteriori: asimple derivation !

du( ) exp[— 4(@('“ *?)] d(Am)dh.

p(Am) d(Am)dh = Am f e (e

A heuristic derivation/interpretation — a posteriori



A posteriori: asimple derivation !

a(ue) dii(q )EXP[_‘I(G(HC Q)]

p(Am) d(Am)dh = Am f dq d(Am)dh.
q(0) dq  \/4m(q(uc) — q)
A heuristic derivation/interpretation — a posteriori
: : 1du dua
Density of states at distance 1- E=0, _—P =——=—
y a  p(E=00)=—P@)=2 0= d

Relation betweenjumpingandM Ny, = N(1- q)/z
Amf = AM?/N = 4Ny, /N = 2(1~q)
Shock location: AR /NAh= E/AM




A posteriori: asimple derivation !

&m
q(uc) du( )EXP[ 4( q(uc

i 1 oa
p(Am) d(Am)dh = Am/ dg —2_ d(Am)dh.
a(0) dq /4 (q(uc) — q)
A heuristic derivation/interpretation — a posteriori
: : 1du di
Density of states at distance 1- E=0,q)== =——=—
y a  p(E=00)==P@)=2 4= d

Relation betweenjumpingandM Ny, = N(1- GI)/2
A = AM 2/N = 4Ny, /N = 2(1-q)

Shock location: ARE /NAh= E/AM
) G oo )
qm 0



A posteriori: asimple derivation !

i 1) di(q) xPl— )] :
p(Am) d(Am)dh = Am f PO ‘”‘f( <) ‘” d(Am)dh.
a(0) dq  \/4m(q(uc) — q)
A heuristic derivation/interpretation — a posteriori A
Density of states at distance 1-q p(E=0, q)— — P(q) = ?g—: = 3_:

Relation between jumpingandM Ny, = N(1- q)/2
AM? = AM?/N = 4N, /N = 2(1-q)
Shock location: ARE /NAh= E/AM

- Ge o -
fm 0

—> Distribution of jump in m AND number of flipping spins:
2C dAm C" dNgip

Am)dAmdh = ==
plam)dAm VT Am \/_Nﬂlp

d.-fl D(Nﬂlp) dNﬂlpdh' - dh.




Nature of avalanches

<>
;T-f 0.00 :."
- 2C dAm - -0 E ol
p(Am)dAmdh = —=———dh _ g .
ﬁ Am n —2.0 200 T 0 s oo
a log( SN
Am™ax 1 AM™ax Ihr E -3.0
4.0
S:=Am N2
_EID i i

dh

=10k E ot I
= -
C d.'.:,\'rﬂi:[] -.-,=:____.- . éﬂl | 'h

D (Nqip) dNgipdh =

\/E Niip E 20 e, T

— K lowsl '™

ANDax , n7 g -3.0 o

flip -
-4.0

50 . i . i . L . ; \

0.5 1.0 1.5 2.0 2.5 3.0
Possible reason for similarity: tog(n), og(S)]

Statics and dynamics are closely related in marginal glasses, such as SK



Applications and extensions



Finite dimensions

(with critical power law correlations)

Analogous argument as above for droplets in finite dimensions;

Lo dL [ vodE EY,
pr(AM) f [] i (ﬁh—m)ﬂ{ﬂﬂ-f}

AM

dz iy (2)27,
(.ﬂflf] dm Janss o zyPn(2)2

—> Power l[aw! With: Avalanche exponent 7 =

Droplet fractal dimension d
Droplet magnetization AM ~ L%
Droplet energy AE ~ L°

New exponent relation!



Avaanchesin the classical
Coulomb glass
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Avaanchesin the classical
Coulomb glass
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Avaanchesin the classical
Coulomb glass
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Add one particleonagivensite n: 0 — 1
— Trigger avalanche of “non-linear screening events’
At T=0: no screening — easy to show: at least O(L) induced jumps



Avaanches in the classical

Coulomb glass
| - - . G
| N H—lz ?
. S RAEE [ 25" r_i,-nj e
T
JIT.;'L- 8% oo o .J
——

Gate

Add one particleonagivensite n: 0 — 1

— Trigger avalanche of “non-linear screening events’

At T=0: no screening — easy to show: at least O(L) induced jumps
Mdller, loffe 04

L ocator approximation predicts critical glass state Pankov, Dobrosavijevic 04
Miiller, Pankov 07

— Expect power law distribution with cutoff ~min(1/T, L)



Physical realization of the
(quantum) SK model
In quantum critical electron
glasses?!

(Mdller, loffe 07)



Quantum electron glasses. close to
metal-1nsulator-criticality

(Mdller, loffe 07)

ﬁ :
% 15 =

J 5=6,

rog=g

0 K’f

3?6

-

Space
Electronsin localization volume behave like a guantum SK mode
Adding a charge — avalanches (polarons): affect transport and relaxations.
Static shocks: Rounding of shocks by tunneling!
— Extract transition rates, avoided level crossing, etc etc...

First step: full solution of quantum SK (Andreanov, Miller in preparation)



Conclusion

Spin glass criticality (in the SK model) — scale free
response to a slow magnetic field change.

Connection between manifestations of criticality:

Soft “Coulomb” gap — avalanches —
algebraic spin-spin correlations

Similar effects expected for electron glasses

Avalanches in Barkhausen noise, fast charge relaxation:
An interesting experimental diagnostic for spin glass criticality?
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