

The view from Planck

- Planck **2015** results. XI. CMB power spectra, likelihoods, and robustness of parameters
- Planck **2015** results. XIII. Cosmological parameters
- Planck intermediate results **2017**. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters
- Planck **2018** results. VI. Cosmological parameters
- Not out yet (few days/weeks away....):
- Planck 2018 results. V. Legacy Power Spectra and Likelihoods
 Only lensing likelihoods release. CMB likelihoods with likelihood paper.

Silvia Galli

IAP

on behalf of the Planck Collaboration

Santa Barbara 15/07/2019

http://www.cosmos.esa.int/web/planck/publications

Terminology

Terminology with contributions from Chen, Nabila, Hendrik and Kimmy

- 1. Short recap on Planck results and tensions
- 2. Curiosities (Alens and low vs high I difference) in the Planck data and their relation.
- 3. Can curiosities explain the tensions?
- 4. If curiosities are systematics, what could they be (in temperature)?
- 5. Polarization

The Planck satellite

3rd generation full sky satellites (COBE, WMAP) Launched in 2009, operated till 2013. 2 Instruments, 9 frequencies.

- 22 radiometers at 30, 44, 70 Ghz.
 HFI:
- 50 bolometers (32 polarized) at 100, 143, 217, 353, 545, 857 Ghz.
- 30-353 Ghz polarized.

 2nd release 2015: Full mission, 29 months for HFI, 48 months for LFI, Temperature + Polarization, large scale pol. from LFI.
 Intermediate results 2016: low-l polarization from HFI

3nd release 2018: Full mission, improved polarization, low/high-l from HFI. Better control of systematics specially in pol., still systematics limited.

Improvement of polarization systematics in 2018

- **Correction of systematics** in polarization (large scales: map-making and sims. Small scales: beam leakage (improved TE by $\Delta\chi^2=37$) and polarization efficiency corrections (improved TE by $\Delta\chi^2=50$). Changes of
 - < 1σ on parameters.

Planck 2018 results. V. Legacy Power Spectra and Likelihoods

 Limitations small remaining uncertainties of systematics in polarization (~0.5s on cosmo. parameters) (quantified with alternative likelihood(CAMspec) at high-I which uses different choices than baseline (Plik)).

Differences well understood, mainly due to change in τ

Planck 2018 results. VI. Cosmological parameters

ΛCDM is a good fit to the data No evidence of preference for classical extensions of ΛCDM

Good consistency with BAO, RSD, SnIa, BBN

planck

ICK

Problem with local measurements H₀(and maybe a discrepancy with weak lensing?)

Planck 2018 TTTEEE+lowE+CMB lensing $H_0 = 67.36 \pm 0.54$

Riess+ 2019 H₀ = 74.0 ± 1.42 km s⁻¹ Mpc⁻¹ [4.4 σ]

Wong+ 2019

 $H_0 = 73.8 \pm 1.1 \text{ km s}^{-1} \text{ Mpc}^{-1} [5.2\sigma]$

 $S_8 = \sigma_8 \sqrt{\Omega_{\rm m}/0.3}, \pm$

Planck 2018 TTTEEE+lowE +CMB lensing $S_8 = 0.832 \pm 0.013$

Joudaki+ 2019 (DES+KiDS) S₈ = 0.762+0.025 [2.6 σ]

Numbers change for different experiments and data combinations

- 1. Short recap on Planck results and tensions
- 2. Curiosities (Alens and low vs high I difference) in the Planck data and their relation.
- 3. Can curiosities explain the tensions?
- 4. If curiosities are systematics, what could they be?
- 5. Polarization

CMB lensing and A_{Lens}

- Lensed CMB power spectrum is a convolution of unlensed CMB with lensing potential power spectrum=>smoothing of the peaks and throughs.
- A_L is a consistency parameter, which rescales the amplitude of the lensing potential which smooths the power spectrum.

$$C^{\Psi}_{\ell}
ightarrow A_L C^{\Psi}_{\ell}$$
 Calabrese+ 2008

 $[L(L+1)]^2/(2\pi) C_L^{\phi\phi} [10^{-7}]$

 Lensing is better measured taking the 4point correlation function of the CMB maps, since lensing breaks isotropy of the CMB, giving a non-gaussian signal.

See e.g. Lewis & Challinor 2006

Peak smoothing in the power spectra

- Preference for high A_I from Planck since 2013.
- Unphysical parameter used for consistency check.
- Driven by TT spectrum(2.4 σ).

 $A_{\rm L} = 1.243 \pm 0.096$ (68 %, *Planck* TT+lowE),

- Not really lensing, not preferred by CMB lensing reconstruction.
- Preference for higher lensing projects into small deviations in extensions which have analogous effect on lensing (Ω_k , w, Σm_v).
- Adding polarization, A_L degenerate with systematics corrections and thus likelihood used.

 $A_{\rm L} = 1.180 \pm 0.065$ (68 %, *Planck* TT,TE,EE+lowE) $A_{\rm L} = 1.149 \pm 0.072$ (68 %, TT,TE,EE+lowE [CamSpec])

done in our two likelihoods)

can impact extensions of

 Λ CDM at ~0.5 σ level.

High-I versus low-I curiosity

esa

- Parameters evaluated from I<800 and I<2500, or I<800 vs I>800 are different at the 2-3 σ level (Planck **2015** results. XI. CMB power spectra, likelihoods, and robustness of parameters)
- Overall, shifts are significant at <~2σ level from simulations (Planck collaboration LI 2017, see also Addison+ 2016).
- The low-highl and the Alens deviations are connected.
- We see differences in polarization as well, but error-bars are too large at high-l to be determinant.

Well behaved residuals, very good χ^2 (unbinned coadded* at I=30-2508 PTE=16% dof=2478).

TT+lowITT+lowE

(lowITTnot shown in this plot)

planck

Residuals of the coadded CMB spectrum, assuming the Λ CDM best fit cosmology and foreground model (coadded~weighted average of foreground cleaned 100x100, 143x143, 143x217 and 217x217 spectra)

*[χ^2 slightly different because for full-frequency binned

 A_L is a phenomenological parameter which allows to better fit both the high and low-ell by $\Delta\chi^2 = 5.3$ ($A_L = 1.24 \pm 0.1$) (plus $\Delta\chi^2 = 2.3$ from lowl TT)

- Alens can be used as a tracer of the I<800 vs>800 difference.
- The features which lead the the high Alens could just be due to statistical fluctuations! In other words, Alens might just be fitting noise/cosmic variance.

planck

Can A_L solve the tensions?

Joudaki+ 2019 **S**₈ = 0.762+0.025

Planck TT+lowIEE 2018	H _o	S ₈	A _L
ΛCDM	66.88 ± 0.92 [4.2 σ]	0.840 ± 0.024 [2.3 σ]	1.
Λ CDM+Alens	68.9 ± 1.2 [2.7 σ]	0.788 ± 0.029 [0.6 σ]	1.24±0.096
Planck TTTEEE +lowIEE 2018			
ΛCDM	67.27 ± 0.60 [4.2 σ]	0.834 ± 0.016 [2.4 σ]	1
∧CDM+Alens	68.28 ± 0.72 [3.6 σ]	0.804 ± 0.019 [1.3 σ]	1.180 ± 0.065

For $H_{0_{i}}$ not that much. Tension remains at the 3.6 σ level.

For $S_{8_{i}}$ it could help, but it does not help in disantangling whether this is a statistical fluctuation in Planck and WL exp., a systematic or new physics.

- 1. Short recap on Planck results and tensions
- 2. Curiosities (Alens and low vs high I difference) in the Planck data and their relation.
- 3. Can curiosities explain the tensions?
- 4. If curiosities are systematics, what could they be?
 - a. Galactic foregrounds
 - **b.** Extra-galactic foregrounds
 - **c.** Pointing errors
 - d. Aberration
 - e. Beam errors

Is Alens due to a problem with galactic dust?

100, 143 and 217 have **different level of galactic foregrounds** and use different masks.

Changes in Alens estimated eliminating 1 frequency at the time are compatible with statistical fluctuations.

In 2015, we also estimated Alens using **different galactic masks with fsky 47%, 37%, 37%** at 100,143,217. Also gave high Alens.

Is Alens due to a problem with galactic dust?

planck

- The residuals at **high-l look very similar at 143 and 217** (100 have too poor resolutions).
- Only the deep at I~1450 is larger in 217Ghz than 143Ghz, and could be due just in part to (chance correlations with) galactic dust.

The low-l vs high-l curiosity and polarization

TT
$$(2 \le \ell \le 801)$$

TT $(30 \le \ell \le 801)$
TT $(\ell \ge 802)$
TT $(\ell \ge 802)$ +lensing
TE,EE $(30 \le \ell \le 801)$
TE,EE $(\ell \ge 802)$ +lensing
TE,EE $(\ell \ge 802)$ +lensing
TT,TE,EE $(\ell \ge 802)$ +lensing
TT,TE,EE $(\ell \ge 802)$ +lensing
TT,TE,EE $(\ell \ge 802)$ +lensing

Even the TT I<800 gives low H_0 when combined with BAO.

$$H_0 = (67.85 \pm 0.52) \text{ km s}^{-1} \text{Mpc}^{-1}, \\ \sigma_8 = 0.8058 \pm 0.0063, \\ \Omega_m = 0.3081 \pm 0.0065.$$

 $68 \%, \text{TT,TE,EE}$
 $[\ell \le 801] + \text{lowE}$
 $+ \text{lensing} + \text{BAO}.$

Planck collaboration VI 2018

Conclusions

- Correction in systematics in the legacy release have improved spectacularly the robustness of the Planck results.
- The ΛCDM model is an excellent fit to the data.
- Curiosities in the Planck data remain at the 2-3s level, and cannot explain the H₀ tension (partly related to the S₈ one.)

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada

