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How does CMB data measure H0?

It comes from the measurement of  three angular scales θs,θd,θeq.

Inference of "  from the CMB is model dependent.H0
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How does CMB data measure H0?

θs sound horizon at last scattering ~1.0404 

plots by L. Knox

from peak spacing

It comes from the measurement of  three angular scales θs,θd,θeq.

Inference of "  from the CMB is model dependent.H0
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How does CMB data measure H0?

no photon diffusion

θd photon diffusion length at last scattering ~ 0.1609 

e.g. Hu&White astro-ph/9609079,  Hu++astro-ph/0006436

“Silk Damping”

plots by L. Knox

It comes from the measurement of  three angular scales θs,θd,θeq.

Inference of "  from the CMB is model dependent.H0
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How does CMB data measure H0?

potential envelope
+ phase shift

θeq horizon size at matter-radiation equality ~ 0.81 

e.g. Hu&White astro-ph/9609079,  Hu++astro-ph/0006436

gravitational “boost”  
of oscillations

plots by L. Knox

It comes from the measurement of  three angular scales θs,θd,θeq.

Inference of "  from the CMB is model dependent.H0
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Solving H0: a “background-level” cookbook

θX ≡
rX(z*)
dA(z*)
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Early universe physics is left unaffected => three angular scales fixed at once. 
Weak CMB constraints from LISW/lensing but strong constraints from BAO/SN.
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Solving H0: a “background-level” cookbook

θX ≡
rX(z*)
dA(z*)

angular diameter distance: post-recombination physics, contains information on H0

physical scales: pre-recombination physics;  DO NOT depend on H0, but on physical densities 
⍵b,⍵r,⍵cdm,⍵nu …

late-universe solution: keep rs(z*) and dA(z*) fixed and break the relationship between dA and H0 
Early universe physics is left unaffected => three angular scales fixed at once. 
Weak CMB constraints from LISW/lensing but strong constraints from BAO/SN.

Any solution must keep these three scales fixed

early-universe solution: decrease rs at fixed θs to decrease dA(z*) and increase H0. 
Late universe observables are basically unaffected. 
The solution must lead to the same shift in rd and req: tuning required?
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H0 tension or rs tension?
One can deduce the co-moving sound horizon rs from H0 and BAO

Aylor++1811.00537 

rs from CMB needs to decrease by ~ 10 Mpc
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Early-Universe solution to H0
rs does not reach 10Mpc before ~ 25000 in ΛCDM

r s 
[M

pc
]

rs = ∫
z*

∞
dz

cs(z)
H(z)

ΛCDM prediction

GOAL: decreasing rs by 10Mpc while keeping rs/rd and rs/req fixed 
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Early-Universe solution to H0
rs does not reach 10Mpc before ~ 25000 in ΛCDM

r s 
[M

pc
]

rs = ∫
z*

∞
dz

cs(z)
H(z)

[insert new physics here]

ΛCDM prediction

GOAL: decreasing rs by 10Mpc while keeping rs/rd and rs/req fixed 
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Scalar field and Early Dark Energy
Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

⇢� =
1

2
�̇2 + Vn(�), P� =

1

2
�̇2 � Vn(�)�̈+ 3H�̇+

dVn(�)

d�
= 0
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V(ϕ) ∝ (1 − cos ϕ)n
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Scalar field and Early Dark Energy
Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

" : matter, " : radiation, etc.n = 1 n = 2

⇢� =
1

2
�̇2 + Vn(�), P� =

1

2
�̇2 � Vn(�)�̈+ 3H�̇+

dVn(�)

d�
= 0

We study an oscillating (toy) potential

Poulin++ 1806.10608  & 1811.04083

V(ϕ) ∝ (1 − cos ϕ)n

"  mostly controls the e.o.s. once the field  
is oscillating: "
n

wn = (n − 1)/(n + 1)
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Scalar field and Early Dark Energy

ρEDE(z ≫ zc) = ρEDE(zc)

ρEDE(z ≪ zc) = ρ0
EDE(1 + z)3(wn+1)

𝒛𝒄

fEDE(zc)

wn ≡
n − 1
n + 1

{

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

We use the: GDM formalism

plot by T. Karwal

" : matter, " : radiation, etc.n = 1 n = 2

⇢� =
1

2
�̇2 + Vn(�), P� =

1

2
�̇2 � Vn(�)�̈+ 3H�̇+

dVn(�)

d�
= 0

GDM: Hu astro-ph/9801234

We study an oscillating (toy) potential

Poulin++ 1806.10608  & 1811.04083

V(ϕ) ∝ (1 − cos ϕ)n

"  mostly controls the e.o.s. once the field  
is oscillating: "
n

wn = (n − 1)/(n + 1)

Dynamics is specified by "fEDE(zc), zc, n, c2
s (k, τ)
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Early Dark Energy In Cosmological Data?

high-l TTTEEE+lowTEB+lensing  
+BAO (no Lya)+Pantheon 
+SH0ES 2016

VP, Smith, Karwal, Kamionkowski, 
PRL 122 (2019)

see poster by T. Karwal
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Early Dark Energy In Cosmological Data?

fEDE(zc) ≡
ρEDE(zc)
ρtot(zc)

∼ 5 ± 2 %

For n >= 2: ~2σ detection

zc ∼ 4000 − 7000

high-l TTTEEE+lowTEB+lensing  
+BAO (no Lya)+Pantheon 
+SH0ES 2016

VP, Smith, Karwal, Kamionkowski, 
PRL 122 (2019)

H0 = 70.6 (71.6) ± 1.3 km/s/Mpc

see poster by T. Karwal
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Early Dark Energy In Cosmological Data?

fEDE(zc) ≡
ρEDE(zc)
ρtot(zc)

∼ 5 ± 2 %

For n >= 2: ~2σ detection

zc ∼ 4000 − 7000

strong increase in ⍵cdm   

upward shift in ns

high-l TTTEEE+lowTEB+lensing  
+BAO (no Lya)+Pantheon 
+SH0ES 2016

VP, Smith, Karwal, Kamionkowski, 
PRL 122 (2019)

H0 = 70.6 (71.6) ± 1.3 km/s/Mpc

see poster by T. Karwal
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Towards the best-fit cosmology step-by-step

add Early-Dark-Energy (same h)

w/r to LCDM “Planck-Only” 2015
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adjust h to match θs

Towards the best-fit cosmology step-by-step

w/r to LCDM “Planck-Only” 2015
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Towards the best-fit cosmology step-by-step

adjust ⍵cdm

w/r to LCDM “Planck-Only” 2015
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Towards the best-fit cosmology step-by-step

adjust As*exp(-2tau), ⍵b

w/r to LCDM “Planck-Only” 2015
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Towards the best-fit cosmology step-by-step

adjust ns

w/r to LCDM “Planck-Only” 2015
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Best-fit w/r to “Planck-only” ΛCDM
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Beyond the fluid approximation
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Log10(zc)
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TT TT, TE, EE

We study the n=3 case without fluid approximation and compare the use of high- "  TT vs 
TT,TE,EE data:

ℓ

Preliminary

Our results are in very good agreement with fluid approximation (if not even “better”): 
f(zc) = 0.11 (0.13) ± 0.03, zc = 3.57 (3.5)+0.04

−0.1 , h = 0.716 (0.722) ± 0.011
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Preference for large !Θi

Polarisation data favors large value of "  in the n=3 case: in agreement with Lin++1905.12618 Θi
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Preference for large !Θi

Polarisation data favors large value of "  in the n=3 case: in agreement with Lin++1905.12618 Θi

"  (68% CL) from polarization.  
Systematics? Real dynamical preference? 
Θi /π > 0.85



V. Poulin - LUPM & JHU KITP, Santa Barbara - 07/15/19�17

Preference for large !Θi

Polarisation data favors large value of "  in the n=3 case: in agreement with Lin++1905.12618 Θi

Also confirms Agrawal++ 1904.01016: n=3 power-law potential do not solve the Hubble Tension.

"  (68% CL) from polarization.  
Systematics? Real dynamical preference? 
Θi /π > 0.85
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Why does polarization favor large ! ?Θi
Residuals features in polarization for modes entering the horizon around zc: ℓ ∼ 30 − 500

see also Lin++1905.12618
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Impact of !  on EDE dynamicsΘi
"  affects the oscillation frequency "  and asymmetry of the energy injection as well as 
the range of modes having "  < 1 
Θi ϖ(a)

c2
s

Lin++1905.12618: “Acoustic” Dark Energy (ADE) with time and scale in-dependent " .c2
s

For the oscillating Dark Energy, a larger range of mode satisfies this constraint as "  increases.Θi

For n=3, data favors " < 0.9 at 95% C.L.c2
s

c2
s =

2a2(n − 1)ϖ2(a) + k2

2a2(n + 1)ϖ2(a) + k2
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The exponent !  as a free parametern
We perform runs with all data, varying " .n ∈ [2,6]

We find "  (68% C.L.): scalar field oscillations are favored over non-oscillating solutions.n = 3+0.3
−0.9

This is also found by Lin++1905.12618: ADE has no oscillations, slightly worst "  χ2
min

68 70 72 74
H0

3

4

5

n
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Detecting the EDE with CMB data only 
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Future CMB experiment like CMB-S4 will be able to detect the EDE without SH0ES data. 
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Without including the EDE: one might strongly bias "  and "  values.H0 ωcdm

Fiducial model: 
"  
"  
"

f(zc) = 0.12
zc = 103.5

h = 0.72
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‘‘Devil’s advocate’’

Freedman [1706.02739]

If true H0 is 74 km/s/Mpc: one expects strong bias towards low H0 from CMB data, as precision  
at high multipole increases.

Did that already happened when going from WMAP to Planck?
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Iso-curvature modes from the EDE
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If EDE field is present during inflation: iso-curvature perturbations are expected. 

Measurements of "  will allow to constrain / confirm the EDE solution.r

The tensor-to-scalar ratio "  also controls the amplitude of the iso-curvature power spectrum.r
e.g. Hlozek, Marsch, Grin, MNRAS 476 (2018)
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Non-linear structures from the EDE
The linear Klein-Gordon equation exhibits parametric resonance: modes passing through 
the resonance band experiences growth, potentially becoming non-linear.

Foquet analysis: EDE models with "  become non linear, but only "  has "
when non-linear.

n < 2.5 n ≃ 2 f(zc) ≳ 1 %

This could lead to the formation of bound structures to look for! 

e.g. Amin++ 1410.3808
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What if there were more of such era to be discovered? We already have seen two (three?) of them.

Is their one field with a complicated potential or many fields with simple potentials?
e.g. Dodelson++astro-ph/0002360, Griest astro-ph/0202052, Kamionkowski++1409.0549

A New Understanding Of Λ? 
The field becomes dynamical around " : Fine tuning ? Coincidence problem 2.0?zeq
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Conclusions
H0 from local measurements is in 4-5σ tension with LCDM-inferred value from Planck.

This tension can be recast as a sound-horizon tension: CMB rs too high by 10Mpc.



V. Poulin - LUPM & JHU KITP, Santa Barbara - 07/15/19�26

Conclusions
H0 from local measurements is in 4-5σ tension with LCDM-inferred value from Planck.

This tension can be recast as a sound-horizon tension: CMB rs too high by 10Mpc.

A Hubble-frozen scalar field acting like Early Dark Energy until z~3500 with f(zc)~10% and 
diluting faster than radiation later can solve the Hubble tension.  

Slightly better fit to Planck data, once SH0ES is included “definite” evidence for n>=3, 
" .Δχ2

min ∼ − 20
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Planck polarization data are sensitive to evolution of perturbations in scalar field.
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Future CMB measurements will be able to test this scenario. (+iso-curvature, + bound structures).

Planck polarization data are sensitive to evolution of perturbations in scalar field.
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Conclusions
H0 from local measurements is in 4-5σ tension with LCDM-inferred value from Planck.

This tension can be recast as a sound-horizon tension: CMB rs too high by 10Mpc.

A Hubble-frozen scalar field acting like Early Dark Energy until z~3500 with f(zc)~10% and 
diluting faster than radiation later can solve the Hubble tension.  

Slightly better fit to Planck data, once SH0ES is included “definite” evidence for n>=3, 
" .Δχ2

min ∼ − 20

Future CMB measurements will be able to test this scenario. (+iso-curvature, + bound structures).

If this is the “correct” resolution: there might be new ways of interpreting Λ and inflation.

Planck polarization data are sensitive to evolution of perturbations in scalar field.


