Early Dark Energy resolution of the Hubble Crisis

Vivian Poulin

Laboratoire Univers et Particules de Montpellier CNRS & Université de Montpellier

w/ T. Smith, T. Karwal, M. Kamionkowski, PRL 122 (2019) w/ T. Smith, M. Amin, to appear

KITP Workshop - Tensions between the Early and the Late Universe Santa Barbara, CA 15 July 2019

2

- Inference of H_0 from the CMB is model dependent.
- It comes from the measurement of three angular scales $\theta_{s,\theta_{d,\theta_{eq.}}}$

- Inference of H_0 from the CMB is model dependent.
- It comes from the measurement of three angular scales $\theta_{s,\theta_d,\theta_{eq.}}$

 θ_s sound horizon at last scattering ~1.0404

V. Poulin - LUPM & JHU

• Inference of H_0 from the CMB is model dependent.

• It comes from the measurement of three angular scales $\theta_{s,\theta_{d,\theta_{eq.}}}$

 θ_d photon diffusion length at last scattering ~ 0.1609

3

e.g. Hu&White astro-ph/9609079, Hu++astro-ph/0006436

V. Poulin - LUPM & JHU

- Inference of H_0 from the CMB is model dependent.
- It comes from the measurement of three angular scales $\theta_{s,\theta_{d,\theta_{eq.}}}$

 θ_{eq} horizon size at matter-radiation equality ~ 0.81

4

e.g. Hu&White astro-ph/9609079, Hu++astro-ph/0006436

V. Poulin - LUPM & JHU

$$\theta_X \equiv \frac{r_X(z_*)}{d_A(z_*)}$$

5

V. Poulin - LUPM & JHU

physical scales: pre-recombination physics; DO NOT depend on H₀, but on physical densities ω_b, ω_r, ω_{cdm}, ω_{nu}...

$$\theta_X \equiv \frac{r_X(z_*)}{d_A(z_*)}$$

5

physical scales: pre-recombination physics; DO NOT depend on H₀, but on physical densities ω_b, ω_r, ω_{cdm}, ω_{nu} ...

 $\theta_X \equiv \frac{r_X(z_*)}{d_A(z_*)}$

5

• angular diameter distance: post-recombination physics, contains information on H0

• physical scales: pre-recombination physics; DO NOT depend on H₀, but on physical densities $\omega_{b,}\omega_{r,}\omega_{cdm},\omega_{nu}$...

 $\theta_X \equiv \frac{r_X(z_*)}{d_A(z_*)}$

• angular diameter distance: post-recombination physics, contains information on H0

Any solution must keep these three scales fixed

• physical scales: pre-recombination physics; DO NOT depend on H₀, but on physical densities $\omega_{b,}\omega_{r,}\omega_{cdm},\omega_{nu}$...

 $\theta_X \equiv \frac{r_X(z_*)}{d_A(z_*)}$

• angular diameter distance: post-recombination physics, contains information on H0

Any solution must keep these three scales fixed

• late-universe solution: keep $r_s(z^*)$ and $d_A(z^*)$ fixed and break the relationship between d_A and H_0

5

- Early universe physics is left unaffected => three angular scales fixed at once.
- Weak CMB constraints from LISW/lensing but strong constraints from BAO/SN.

• physical scales: pre-recombination physics; DO NOT depend on H₀, but on physical densities $\omega_{b,}\omega_{r,}\omega_{cdm},\omega_{nu}$...

 $\theta_X \equiv \frac{r_X(z_*)}{d_A(z_*)}$

• angular diameter distance: post-recombination physics, contains information on H0

Any solution must keep these three scales fixed

late-universe solution: keep r_s(z*) and d_A(z*) fixed and break the relationship between d_A and H₀
 Early universe physics is left unaffected => three angular scales fixed at once.

• Weak CMB constraints from LISW/lensing but strong constraints from BAO/SN.

• early-universe solution: decrease r_s at fixed θs to decrease $d_A(z^*)$ and increase H0.

- Late universe observables are basically unaffected.
- The solution must lead to the same shift in r_d and r_{eq} : tuning required?

H0 tension or r_s tension?

One can deduce the co-moving sound horizon r_s from H0 and BAO r_s from CMB needs to decrease by ~ 10 Mpc

6

V. Poulin - LUPM & JHU

Early-Universe solution to H0

• r_s does not reach 10Mpc before ~ 25000 in Λ CDM

GOAL: decreasing r_s by 10Mpc while keeping r_s/r_d and r_s/r_{eq} fixed

7

V. Poulin - LUPM & JHU

Early-Universe solution to H0

• r_s does not reach 10Mpc before ~ 25000 in Λ CDM

GOAL: decreasing r_s by 10Mpc while keeping r_s/r_d and r_s/r_{eq} fixed

7

V. Poulin - LUPM & JHU

Early-Universe solution to H0

• r_s does not reach 10Mpc before ~ 25000 in Λ CDM

GOAL: decreasing r_s by 10Mpc while keeping r_s/r_d and r_s/r_{eq} fixed

7

V. Poulin - LUPM & JHU

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0 \qquad \rho_\phi = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_\phi = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0 \qquad \rho_\phi = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_\phi = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

• We study an oscillating (toy) potential

 $V(\phi) \propto (1 - \cos \phi)^n$

Poulin++ 1806.10608 & 1811.04083

8

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0 \qquad \rho_\phi = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_\phi = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

• We study an oscillating (toy) potential

 $V(\phi) \propto (1 - \cos \phi)^n$

Poulin++ 1806.10608 & 1811.04083

- *n* mostly controls the e.o.s. once the field is oscillating: $w_n = (n-1)/(n+1)$
 - n = 1: matter, n = 2: radiation, etc.

Initially slowly-rolling field (due to Hubble friction) that later dilutes faster than matter

8

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV_n(\phi)}{d\phi} = 0 \qquad \rho_\phi = \frac{1}{2}\dot{\phi}^2 + V_n(\phi), \ P_\phi = \frac{1}{2}\dot{\phi}^2 - V_n(\phi)$$

• We study an oscillating (toy) potential

 $V(\phi) \propto (1 - \cos \phi)^n$

Poulin++ 1806.10608 & 1811.04083

- *n* mostly controls the e.o.s. once the field is oscillating: w_n = (n 1)/(n + 1)
 n = 1: matter, n = 2: radiation, etc.
- We use the: GDM formalism

 $\begin{cases} \rho_{\text{EDE}}(z \gg z_c) = \rho_{\text{EDE}}(z_c) \\ \rho_{\text{EDE}}(z \ll z_c) = \rho_{\text{EDE}}^0 (1+z)^{3(w_n+1)} \end{cases}$

GDM: Hu astro-ph/9801234

• Dynamics is specified by $f_{\text{EDE}}(z_c), z_c, n, c_s^2(k, \tau)$

Radiation Matter 1012 Cosmological constant 8*πG*/3)*ρ_i* [Mpc⁻²] Total density 10⁸ Early dark energy 104 10⁰ 10^{-4} 10⁻⁸ *n* – $w_n \equiv$ 10^{-12} 0ede Pcrit $f_{\rm EDE}(z_c)$ 0.00 100 10² 10³ 104 10⁵ 10^{-1} 10¹ 10⁶ 10^{7} Ζ

plot by T. Karwal

V. Poulin - LUPM & JHU

Early Dark Energy In Cosmological Data?

0.9774

 n_s

0.120

 $\omega_{
m cdm}$

0.136

0.9992

n = 2high-l TTTEEE+lowTEB+lensing $n = \infty$ +BAO (no Lya)+Pantheon n = 3+SH0ES 2016 ΛCDM -3.20.9555 $\mathrm{Log}_{10}(a_c)$ -3.6-4.0see poster by T. Karwal 7875H072690.136 $\omega_{
m cdm}$ VP, Smith, Karwal, Kamionkowski, 0.120 PRL 122 (2019) 0.04 0.08 0.12 72 75 -4.0 - 3.6 - 3.269 78V. Poulin - LUPM & JHU $\log_{10}(a_c)$ $f_{\rm EDE}(a_c)$ H0

Early Dark Energy In Cosmological Data?

Early Dark Energy In Cosmological Data?

n=2high-l TTTEEE+lowTEB+lensing 0 $n = \infty$ +BAO (no Lya)+Pantheon n = 3+SH0ES 2016 ΛCDM -3.2• For $n \ge 2$: ~2 σ detection 0.9555 0.9774 0.9992 $(300)^{-3.6}$ $(300)^{-3.6}$ $(300)^{-3.6}$ $(300)^{-3.6}$ $(300)^{-3.6}$ n_s $f_{\text{EDE}}(z_c) \equiv \frac{\rho_{\text{EDE}}(z_c)}{\rho_{\text{tot}}(z_c)} \sim 5 \pm 2\%$ see poster by T. Karwal 78 $z_c \sim 4000 - 7000$ 75H072 $H_0 = 70.6 (71.6) \pm 1.3 \text{ km/s/Mpc}$ 69strong increase in ω_{cdm} 0.136 • upward shift in n_s $\omega_{
m cdm}$ VP, Smith, Karwal, Kamionkowski, 0.120 PRL 122 (2019) 0.04 0.08 0.12 -4.0 - 3.6 - 3.269 72 75 780.1200.136V. Poulin - LUPM & JHU $f_{\rm EDE}(a_c)$ $\operatorname{Log}_{10}(a_c)$ H0 $\omega_{\rm cdm}$

w/r to LCDM "Planck-Only" 2015

10

V. Poulin - LUPM & JHU

w/r to LCDM "Planck-Only" 2015

11

V. Poulin - LUPM & JHU

w/r to LCDM "Planck-Only" 2015

12

V. Poulin - LUPM & JHU

w/r to LCDM "Planck-Only" 2015

V. Poulin - LUPM & JHU

w/r to LCDM "Planck-Only" 2015

V. Poulin - LUPM & JHU

KITP, Santa Barbara - 07/15/19

14

Best-fit w/r to "Planck-only" ACDM

	ΛCDM	n=2	n = 3	$n = \infty$	$N_{ m eff}$
Total χ^2_{\min}	13995.1	13985.6	13980.6	13986.0	13991.2
$\Delta\chi^2_{ m min}$	0	-9.5	-14.5	-9.1	-3.9
$\Delta \log B^{\mathbf{a}}$	0	-0.51	+2.51	+2.41	-0.44

V. Poulin - LUPM & JHU

Beyond the fluid approximation

• We study the n=3 case without fluid approximation and compare the use of high- ℓ TT vs TT,TE,EE data:

• Our results are in very good agreement with fluid approximation (if not even "better"): $f(z_c) = 0.11 \ (0.13) \pm 0.03, \ z_c = 3.57 \ (3.5)^{+0.04}_{-0.1}, \ h = 0.716 \ (0.722) \pm 0.011$

	Datasets	ΛCDM	n = 3
	$Planck$ high- ℓ TT, TE, EE	2446.66	2444
	<i>Planck</i> low- ℓ TT, TE, EE	10496.65	10493.25
	Planck lensing	10.37	10.24
	BAO-low z	1.86	2.53
	BAO-high z	1.84	2.1
	Pantheon	1027.04	1027.11
	SH0ES	16.80	1.68
V. Poulin - LUPN	Total χ^2_{\min}	14001.23	13980.94
	$\Delta\chi^2_{ m min}$	0	-20.29

rbara - 07/15/19

Preference for large Θ_i

• Polarisation data favors large value of Θ_i in the n=3 case: in agreement with Lin++1905.12618

17

Preference for large Θ_i

• Polarisation data favors large value of Θ_i in the n=3 case: in agreement with Lin++1905.12618

17

Preference for large Θ_i

• Polarisation data favors large value of Θ_i in the n=3 case: in agreement with Lin++1905.12618

• Also confirms Agrawal++ 1904.01016: n=3 power-law potential do not solve the Hubble Tension.

17

V. Poulin - LUPM & JHU

Why does polarization favor large Θ_i ?

• Residuals features in polarization for modes entering the horizon around z_c : $\ell \sim 30 - 500$

V. Poulin - LUPM & JHU

Impact of Θ_i on EDE dynamics

• Θ_i affects the oscillation frequency $\varpi(a)$ and asymmetry of the energy injection as well as the range of modes having $c_s^2 < 1$

• Lin++1905.12618: "Acoustic" Dark Energy (ADE) with time and scale *in*-dependent c_s^2 .

For n=3, data favors $c_s^2 < 0.9$ at 95% C.L.

• For the oscillating Dark Energy, a larger range of mode satisfies this constraint as Θ_i increases.

19

The exponent *n* as a free parameter

We perform runs with all data, varying $n \in [2,6]$.

• We find $n = 3^{+0.3}_{-0.9}$ (68% C.L.): scalar field oscillations are favored over non-oscillating solutions.

• This is also found by Lin++1905.12618: ADE has no oscillations, slightly worst χ^2_{min}

model (data)	ΔN	H_0	$\Delta \chi^2_{\rm tot}$	$\Delta \chi^2_{ m CMB}$	$\Delta\chi^2_{ m H0}$
cADE	2	$70.57(70.60 \pm 0.85)$	-12.7	-3.6	-8.8
ADE	4	$70.81(70.20\pm0.88)$	-14.1	-3.7	-9.6
EDE	4	$71.92(71.40\pm1.09)$	-16.6	-3.7	-12.5

20

V. Poulin - LUPM & JHU

Detecting the EDE with CMB data only

• Future CMB experiment like CMB-S4 will be able to detect the EDE without SH0ES data.

• Without including the EDE: one might strongly bias H_0 and ω_{cdm} values.

21

V. Poulin - LUPM & JHU

"Devil's advocate"

If true H0 is 74 km/s/Mpc: one expects strong bias towards low H0 from CMB data, as precision at high multipole increases.

• Did that already happened when going from WMAP to Planck?

V. Poulin - LUPM & JHU

Iso-curvature modes from the EDE

- If EDE field is present during inflation: iso-curvature perturbations are expected.
- The tensor-to-scalar ratio *r* also controls the amplitude of the iso-curvature power spectrum. *e.g. Hlozek, Marsch, Grin, MNRAS* 476 (2018)

23

Measurements of r will allow to constrain / confirm the EDE solution.

V. Poulin - LUPM & JHU

Non-linear structures from the EDE

The linear Klein-Gordon equation exhibits parametric resonance: modes passing through the resonance band experiences growth, potentially becoming non-linear.

e.g. Amin++ 1410.3808

• Foquet analysis: EDE models with n < 2.5 become non linear, but only $n \simeq 2$ has $f(z_c) \gtrsim 1\%$ when non-linear.

• This could lead to the formation of **bound structures** to look for!

V. Poulin - LUPM & JHU

A New Understanding Of Λ ?

- The field becomes dynamical around z_{eq} : Fine tuning ? Coincidence problem 2.0?
- What if there were more of such era to be discovered? We already have seen two (three?) of them.
- Is their one field with a complicated potential or many fields with simple potentials?
 e.g. Dodelson++astro-ph/0002360, Griest astro-ph/0202052, Kamionkowski++1409.0549

A New Understanding Of Λ ?

- The field becomes dynamical around z_{eq} : Fine tuning ? Coincidence problem 2.0?
- What if there were more of such era to be discovered? We already have seen two (three?) of them.
- Is their one field with a complicated potential or many fields with simple potentials?
 e.g. Dodelson++astro-ph/0002360, Griest astro-ph/0202052, Kamionkowski++1409.0549

V. Poulin - LUPM & JHU

A New Understanding Of Λ ?

- The field becomes dynamical around z_{eq} : Fine tuning ? Coincidence problem 2.0?
- What if there were more of such era to be discovered? We already have seen two (three?) of them.
- Is their one field with a complicated potential or many fields with simple potentials?
 e.g. Dodelson++astro-ph/0002360, Griest astro-ph/0202052, Kamionkowski++1409.0549

25

V. Poulin - LUPM & JHU

- H_0 from local measurements is in 4-5 σ tension with LCDM-inferred value from Planck.
- This tension can be recast as a sound-horizon tension: CMB r_s too high by 10Mpc.

- H_0 from local measurements is in 4-5 σ tension with LCDM-inferred value from Planck.
- This tension can be recast as a sound-horizon tension: CMB r_s too high by 10Mpc.
- A Hubble-frozen scalar field acting like Early Dark Energy until z~3500 with f(z_c)~10% and diluting faster than radiation later can solve the Hubble tension.
- Slightly better fit to Planck data, once SH0ES is included "definite" evidence for n>=3, $\Delta \chi^2_{min} \sim -20$.

- H_0 from local measurements is in 4-5 σ tension with LCDM-inferred value from Planck.
- This tension can be recast as a sound-horizon tension: CMB r_s too high by 10Mpc.
- A Hubble-frozen scalar field acting like Early Dark Energy until $z\sim3500$ with $f(z_c)\sim10\%$ and diluting faster than radiation later can solve the Hubble tension.
- Slightly better fit to Planck data, once SH0ES is included "definite" evidence for n>=3, $\Delta \chi^2_{min} \sim -20$.
- *Planck* polarization data are sensitive to evolution of perturbations in scalar field.

- H_0 from local measurements is in 4-5 σ tension with LCDM-inferred value from Planck.
- This tension can be recast as a sound-horizon tension: CMB r_s too high by 10Mpc.
- A Hubble-frozen scalar field acting like Early Dark Energy until z~3500 with f(z_c)~10% and diluting faster than radiation later can solve the Hubble tension.
- Slightly better fit to Planck data, once SH0ES is included "definite" evidence for n>=3, $\Delta \chi^2_{min} \sim -20$.
- *Planck* polarization data are sensitive to evolution of perturbations in scalar field.
- Future CMB measurements will be able to test this scenario. (+iso-curvature, + bound structures).

26

- H_0 from local measurements is in 4-5 σ tension with LCDM-inferred value from Planck.
- This tension can be recast as a sound-horizon tension: CMB r_s too high by 10Mpc.
- A Hubble-frozen scalar field acting like Early Dark Energy until z~3500 with f(z_c)~10% and diluting faster than radiation later can solve the Hubble tension.
- Slightly better fit to Planck data, once SH0ES is included "definite" evidence for n>=3, $\Delta \chi^2_{min} \sim -20$.
- *Planck* polarization data are sensitive to evolution of perturbations in scalar field.
- Future CMB measurements will be able to test this scenario. (+iso-curvature, + bound structures).
- If this is the "correct" resolution: there might be new ways of interpreting Λ and inflation.