Time Delay Cosmography and the Hubble Constant Tension Tension

TOMMASO TREU
University of California Los Angeles

Outline

- Introduction. Time delay cosmography
 - How does it work?
 - A brief history
- Modern time delay cosmography and the Hubble Constant
 - Methodology the importance of blindness
 - Recent Results
 - Systematics and data challenges
- Implications for cosmology
- Future outlook

Systematic errors or new physics?

Riess et al. 2019: this morning

Time delay cosmography

What is Gravitational Lensing?

Movie courtesy of Y. Hezaveh

Cosmography from time delays: how does it work?

Time delay distance in practice

$$\Delta t \propto D_{\Delta t}(z_s, z_d) \propto H_0^{-1} f(\Omega_m, w, ...)$$

Steps:

- Measure the time-delay between two images
- Measure and model the potential
- Infer the time-delay distance
- Convert it into cosmlogical parameters

Cosmography from time delays: A brief history

- 1964 Method proposed
- 70s First lenses discovered
- 80s First time delay measured
 - Controversy. Solution: improve sampling
- 90s First Hubble Constant measured
 - Controversy. Solution: improve mass models
- 2000s: modern monitoring (COSMOGRAIL, Fassnacht & others); stellar kinematics (Treu & Koopmans 2002); extended sources
- 2010s Putting it all together: precision measurements (6-7% from a single lens)
- 2014 first multiply imaged supernova discovered (50th anniversary of Refsdal's paper)

"In theory there is no difference between theory and practice. In practice there is."

Yogi Berra

A real life example

Kelly, Rodney, Treu et al. 2015

"REFSDAL" MEETS POPPER: COMPARING PREDICTIONS OF THE RE-APPEARANCE OF THE MULTIPLY IMAGED SUPERNOVA BEHIND MACSJ1149.5+2223

T. Treu^{1,28}, G. Brammer², J. M. Diego³, C. Grillo⁴, P. L. Kelly⁵, M. Oguri^{6,7,8}, S. A. Rodney^{9,10,29}, P. Rosati¹¹, K. Sharon¹², A. Zitrin^{13,29}, I. Balestra¹⁴, M. Bradač¹⁵, T. Broadhurst^{16,17}, G. B. Caminha¹¹, A. Halkola, A. Hoag¹⁵, M. Ishigaki^{7,18}, T. L. Johnson¹², W. Karman¹⁹, R. Kawamata²⁰, A. Mercurio²¹, K. B. Schmidt²², L.-G. Strolger^{2,23}, S. H. Suyu²⁴, A. V. Filippenko⁵, R. J. Foley^{25,26}, S. W. Jha²⁷, and B. Patel²⁷

Received 2015 October 19; accepted 2015 November 24; published 2016 January 20

"IT'S LIKE DEJA-VU, ALL OVER AGAIN."

YOGI BERRA

© Lifehack Quotes

DÉJÀ VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL

P. L. Kelly¹, S. A. Rodney², T. Treu^{3,4}, L.-G. Strolger⁵, R. J. Foley^{6,7}, S. W. Jha⁸, J. Selsing⁹, G. Brammer⁵, M. Bradač¹⁰, S. B. Cenko^{11,12}, O. Graur^{13,14}, A. V. Filippenko¹, J. Hjorth⁹, C. McCully^{15,16}, A. Molino^{17,18}, M. Nonino¹⁹, A. G. Riess^{20,5}, K. B. Schmidt^{16,21}, B. Tucker²², A. von der Linden²³, B. J. Weiner²⁴, and A. Zitrin^{25,26}

DÉJÀ VU ALL OVER AGAIN: THE REAPPEARANCE OF SUPERNOVA REFSDAL

P. L. Kelly¹, S. A. Rodney², T. Treu^{3,4}, L.-G. Strolger⁵, R. J. Foley^{6,7}, S. W. Jha⁸, J. Selsing⁹, G. Brammer⁵, M. Bradač¹⁰, S. B. Cenko^{11,12}, O. Graur^{13,14}, A. V. Filippenko¹, J. Hjorth⁹, C. McCully^{15,16}, A. Molino^{17,18}, M. Nonino¹⁹, A. G. Riess^{20,5}, K. B. Schmidt^{16,21}, B. Tucker²², A. von der Linden²³, B. J. Weiner²⁴, and A. Zitrin^{25,26}

 $Draft\ version\ 2015/12/16$

See Rodney's talk for prospects of measuring H0 from Refsdal

Modern time delay cosmography

Cosmography with strong lenses: the 4 problems solved

- Time delay 2-3 %
 - Tenacious monitoring (e.g. Fassnacht et al. 2002);
 COSMOGRAIL (Meylan/Courbin)
- Astrometry 10-20 mas
 - Hubble/VLA/(Adaptive Optics?)
- Lens potential (2-3%)
 - Stellar kinematics/Extended sources (Treu & Koopmans 2002; Suyu et al. 2009)
- Structure along the line of sight (2-3%)
 - Galaxy counts and numerical simulations (Suyu et al. 2010)
 - Stellar kinematics (Koopmans et al. 2003)

Cosmography with strong lenses: measuring time delays

Vanderriest et al. 1989

COSMOGRAIL: better data & better techniques

Cosmography with strong lenses: measuring the lens potential

Schechter et al. 1997

Host galaxy reconstruction; Suyu et al. 2012

Cosmography with strong lenses: measuring the lens potential

Stellar kinematics: Treu & Koopmans 2002

Cosmography with strong lenses: Structure along the line of sight

Suyu et al. 2010

Methodology - Blindness

- Blinding is the most effective way to avoid experimenter bias and discover unknown unknowns
- Refsdal is a rare example of a true blind test in astronomy
- "Blindness" can be achieved for example via software, by removing the average of the posterior pdf during the measurement and only revealing the average/peak just prior to publication.
 - Unblinded results are published without correction.

Current status

- Six-lens sample analyzed by our collaboration (H0licow and friends)
- 5/6 Analyzed blind (except first one): all of them consistent with each other
- 3/6 systems have Keck+AO data that provide consistent results with HST
- 5/6 systems analyzed with code GLEE, 1 with code LENSTRONOMY

2019 Publications

- Birrer et al. 2019, MNRAS, 448, 4726 (SDSSJ1206)
- Bonvin et al. 2019, arxiv.190508260 (WFI2033 time delay)
- Rusu et al 2019, arxiv.190509338 (WFI2033 models)
- Sluse et al. 2019, arxiv.190508800 (WFI2033 environment)
- Chen et al. 2019, arxiv.190702533 (HE0435, RXJ1131, PG1115 AO+HST; at this conference!)
- Wong et al 2019, arxiv.190704869 (cosmography from six lenses, including B1608)

Birrer, TT et al. 2019; Agnello et al. 2016

Birrer, TT et al. 2019

Tension!

<u>Six-Lens Sample</u>

Tension!

- Lenses as anchors to Ia.
- H0 almost independent of cosmology AND of local distance ladder

Results from the six-lens sample: 5.3 sigma tension

Checking for systematics: AO vs HST

Chen et al 2019; see poster

Checking for systematics: AO vs HST

Checking for systematics: time delay challenge

- Generated mock light curves with realistic properties
- Asked teams to recover time delay
 - 78 methods were tested
 - The best ones recovered time delay with subpercent accuracy (no bias)

Checking for systematics: lens modeling challenge

- Generated HST images with realistic properties
- Teams were given HST images and time delays and asked to infer the Hubble constant
 - Rung 1 given exact PSF
 - Rung 2 given guess PSF (simple lens)
 - Rung 3 given guess PSF (complex lens)
- Rung 3 deadline in August

Future outlook: towards 1%

Two ways forward

- Better precision per system
- More systems (30-40 needed)

Shajib's talk

Spatially resolved kinematics breaks the mass-anisotropy degeneracy

More lenses!

Shajib et al. 2019

Summary

- Time delay cosmography measures H0 to a precision comparable and completely independent of the local distance ladder method
- Combining with SHOES increase the tension with Planck and other early universe probes to >5 sigma in LCDM
- Work is under way to test systematics, including via data challenges
- We can reach <2% precision on H₀ within a year and subpercent in a few years