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Standard Model

   Presents a consistent description of particle interactions based on  

Lorentz Invariance 

Gauge Invariance 

Renormalizability 

 Gauge theory is chiral. Masses are obtained via the introduction of the Higgs. 

CP symmetry is broken and the effect may be understood as proceeding from 
arbitrary complex Yukawa coupling that lead, after diagonalization, to CP 
violating phases in weak interactions.  

Electromagnetic and strong interactions are CP-invariant at tree-level. No CP-  
violating effects mediated by these interactions have been observed. 



Other Properties of the SM
  No tree-level Flavor Changing Neutral Currents  

 GIM Suppression at the loop level 

 Since the right-handed quarks do not feel the charged weak interactions,  after 
diagonalization all the phases in the diagonal mass terms may be eliminated by 
redefinition of the right-handed quark fields, with no tree-level consequences.  

Problem at tree-level :  Large hierarchy of fermion masses. In particular,  neutrino  
masses                   

 Problem at the quantum-level :   

 CP-violation in strong interaction is induced : Strong CP Problem 

 Higgs mass parameter is ultraviolet sensitive : Hierarchy Problem 

Hypercharge interactions are not asymptotically free : Energy of the associated 
Landau Pole too high for the SM to be valid as an effective theory at those scales.



Other Properties of the SM
  No tree-level Flavor Changing Neutral Currents  

 GIM Suppression at the loop level 

 Since the right-handed quarks do not feel the charged weak interactions,  
after diagonalization all the phases in the diagonal mass terms may be 
eliminated by redefinition of the right-handed quark fields, with no tree-level 
consequences.  

Problem at tree-level :  Large hierarchy of fermion masses. Neutrino  masses                   

 Problem at the quantum-level :   

 CP-violation in strong interaction is induced :  Strong CP Problem 

 Higgs mass parameter is ultraviolet sensitive : Hierarchy Problem



The relevance of θ in QCD

m⇡ ⇠ 140MeV

m� ⇠ 1.1GeV

Nicely explained by chiral perturbation theory

SU(3)L ⇥ SU(3)R/SU(3)V

Pions are pseudo-Goldstone bosons. They would 
be massless if quarks were massless



The relevance of θ in QCD

m⇡ ⇠ 140MeV

m� ⇠ 1.1GeV

Nicely explained by chiral perturbation theory

m⌘0 ⇠ 0.96GeV U(1) problem

U(1)L ⇥ U(1)R/U(1)V

 The solution to this problem is associated with the anomalous nature of the  
axial symmetry                 , which is therefore not a good symmetry at the 
quantum level.  

 t’Hooft solution to this problem relied also on the complexity of the QCD 
vacuum, which is associated with a new, dimensionless parameter 

U(1)A

✓QCD

The QCD U(1)A Problem



The θ vacuum
Vacua in QCD associated with pure gauge fields belonging to different homotopy 
classes.  There are field configurations mediating transitions between these vacua 

The true, gauge invariant and physical vacuum of QCD is none of those vaccua, 
but a particular combination  

And actually, given two different values of this new parameter and can simply 
show that the matrix element of gauge invariant operators 

This means that these vacuua are stable under gauge invariant perturbations. It 
also means that while quantizing the QCD theory one should add an additional 
term 
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Chiral Anomaly
In the massless limit, the anomaly is connected with the divergence of the 
axial current 

As is well known, the right is a total derivative, and one can define a new, 
conserved current  (                ), which is however not gauge invariant  

Indeed, considering  
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CP-Violation in the Strong Sector

The new term ,                                               ,   explicitly violates CP. 

Actually, as we shown before any chiral rotation of the quark fields would 
lead to a redefinition of the new parameter  θ, implying that the only, physical, 
parametrization invariant quantity is given by 

Here,  the mass terms have been defined as 

Therefore, the physical parameter can be identified with the θ term in the 
Lagrangian when all mass parameters are real.  

One can, by proper chiral transformations, redefine θ away, while shifting it to 
the argument of one of the quark masses, for instance, the up quark mass.  
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CP-Violation and Chiral Perturbation Theory

The study of the consequences of CP-violation in chiral perturbation theory may 
be better performed by removing the θ term and transferring it to the imaginary 
component of the mass terms.  

One should do it carefully, so that the new CP-violating mass operators do not 
mix with the Goldstone bosons. The result is straightforward, resulting in the 
three flavor case, in a CP-violating Lagrangian, 

This expression contains all the right properties, showing that for vanishing 
masses the CP-violation is not present.  

The presence of this CP-violating term induces a calculable neutron electric 
dipole moment in chiral perturbation theory.  Observe that the mass factor is just

LCP = � Im[mumdms exp(i✓)]

|mumd|+ |mums|+ |mdms|
(ū�5u+

¯d�5d+ s̄�5s)

me↵ =
|mumdms|

|mumd|+ |mums|+ |msmd|
me↵ sin(✓QCD) with



The neutron electric dipole moment
• In chiral perturbation theory, taking the strange mass to be much larger 

than the up and down masses,  

• Similar results may be obtained with QCD sum rules, 

The relevance of θ in QCD

n np

g⇡NN
ḡ⇡NN

⇡�

�

Similar to QCD sum rules result

M. Pospelov and A. Ritz, 9908508

R. J. Crewther, P. Di Vecchia, G. Veneziano,  
and E. Witten, Phys. Lett. 88B, 123 (1979) 

ḡ⇡NN ⇠ ✓QCD
meff

F⇡
meff ⇠ mumd

mu +md

dn ' ✓QCD ⇥ (2.4± 0.7)⇥ 10�16e cm

M. Pospelov and A. Ritz, arXiv:9908508 

Volume 88B, number 1, 2 PHYSICS LETTERS 3 December 1979 

It is amusing that such an exact formula can be given, 
but the effect is much too small to be observable. Our 
analysis of  the neutron electric dipole moment  will 
result in the bound 101 ~ 10 -9  , so the branching ratio 
for 77 ~ nrr implied by eq. (9) is at least 13 orders of  
magnitude smaller than the present upper bound [10] 
1.5 X 10 - 3 .  

The calculation of  the neutron electric dipole moment  
depends on another interesting quantity, the CP violat- 
ing p ion-nucleon  coupling constant g~rNN, for which 
there is an explicit prediction. Let the full rrNN inter- 
action be represented by the effective lagrangian 

"~nNN = g"  ~% (i~(5gnNN + gnNN) N , ( I0)  
where % are isospin Pauh matrices. To compute guNN, 
we contract the pion in the amplitude 

(rtaNflSZ?cpIN ~) 

= -OF~lmumd(mu + md)-l~4flZlraql Ni),  (11) 

and observe that (Nfl ?qraql N~) is related by ordinary 
SU(3) symmetry to the F coupling which sphts .~ from 
N in the baryon octet. Thus our result is 

grrNN = -O(Mz - MN)mumd/ [Frr(mu +md) ' 

X (2m s - m u -  md) ] ,  (12) 

or numerically 

Ig~rNNI ~ 0.03810l, (13) 

where the known quark mass ratios [11] have been 
substituted. Of course, this is minute compared with 
the usual CP conserving coupling Ig~rNNI ~ 13.4. 

To first order in 0, the neutron electric dipole 
moment  D n is given by 

T(n(pf)lJ,(o)i f dax 8Z?cp(x)l n (Pi)) 

= -DnUfOu~,kV75u 1 + O ( k 2 ) ,  (14) 

where k = p f -  Pi is the momentum carried by the ha- 
dronic electromagnetic current Ju" This matrix element 
can be written as a sum over intermediate states IX) 
inserted between the two operators. We have to eva- 
luate products of  the type 

(n (pf)IJul X) (XIS.QcpI n (P i ) ) ,  (15) 

plus terms with Ju and 8Z?cp exchanged. 

Baluni [2] estimated (14) by assuming the sum over 
IX) to be saturated by the lowest-lying 1 /2-  resonances 
N(1535) and N(1700), and applying the MIT bag model 
to the resulting matrix elements. Our intention is to 
avoid such model dependence by establishing a theorem 
which rigorously determines D n in the chiral hmit rn~r 

0. However, we shall see that Baluni's numerical esti- 
mate is not very different from ours. 

To establish an exact result, we have to treat the in- 
termediate states I X) as multiparticle states of  the stable 
hadrons: 

IX) = IN), INTr), INTrrr) .... , I N N ~ .  (16) 

Note that it would be double counting to include a 
resonance state IN*) or a state like IN*n) on this list. 

The next step is to show that the most singular con- 
tribution to D n for m~r ~ 0 arises solely from the inter- 
mediate state IX) = INn). This state contributes a term 

2 2 . m 2 comes from the explicit O(m~r In m~r ). the factor 
factor mumd/(m u + md) in 8.12Cp ' while the non- 
analytic factor In m 2 is generated by an infra-red di- 
vergence of  the loop integral at m~r = 0. 

The other states in the complete set (16) produce 
analytic contributions O(m~) or non-analytic terms 
O(m 3) or O(m 4 In m2), all of  which are less singular 
than m21n m2r. The only states capable of  generating 
a logarithmic dependence are those which become de- 
generate ,2 in energy with the external neutron states 
in the soft-pion limit, so states hke I NNlq) can be ex- 
cluded. Non-analytic contributions due to states IX) 
with a nucleon and two or more pions are at least 
O(m 2) compared with the contribution of  InN) be- 
cause of  lack of  phase space at threshold. Finally, the 
contribution of  the single nucleon state IX) = IN) is 
O(m2): it is proportional to the neutron magnetic 
moment /a  n which is finite in the limit m~r -~ 0 (with 
O(m~r ) corrections [3]). 

It is therefore sufficient to restrict our attention to 
the states ,3 

IX) = ] Nlrsoft), (17) 

in order to determine the leading O(rn 2 I n n  2) term 
completely. One of  the factors in (15) becomes 

~:2 We neglect the proton-neutron mass difference. 
:~3 Considered many years ago [12] as a contribution in the 

saturation of sideways dispersion relations. 
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The Strong CP Problem

Current bounds on the neutron electric dipole moment show that the physical 
parameter            should be very small, namely  

This implies that 

 But from our discussion above, there is no real reason why this parameter 
should be small.  The mass parameters, after all, can in principle carry 
arbitrary phases, and one would expect in general that  

This constitutes the so-called Strong CP-problem. 

dn < 3⇥ 10�26e cm

✓QCD

✓QCD ⇠ O(1)

✓QCD < 1.3⇥ 10�10



Old solutions to the strong CP Problem

Make θ a Dynamical field : The axion solution. Axion effective potential is 
such that the vacuum solution is associated with an effective  

Make CP an exact symmetry broken spontaneously in such a way that the 
determinant of the quark matrix remains real. 

  Up quark is massless   

✓QCD = 0

R.D. Peccei and H.R. Quinn’77
F. Wilczek’78, S. Weinberg’78 

A. Nelson’84 and S.M. Barr’84

H. Georgi and I. Mc Arthur’81
K. Choi, C.W. Kim and W.K. Sze’88
T. Banks, Y. Nir and N. Seiberg’94
W. A. Bardeen’19 



Rephrasing the Problem
When discussing the neutron electric dipole moment we discovered that it 
depended on the combination 

This combination is physical and invariant under field redefinitions. One can 
make appropriate field redefinitions to eliminate  θ and make the down and 
strange quark masses real.  

In such a basis, only the up quark mass is complex and the bound on the 
electric dipole moment becomes a bound on the imaginary component of the 
up quark mass.  In this basis, that we will just use as a guidance, 

And the bound translates to a bound on the imaginary component of 

Im[mumdms exp(i✓)] = |mumdms| exp(i✓QCD)

✓QCD = arg[mu]

mu

Im[mu(1GeV)] < 10�3eV



General Basis
The bound on the imaginary part of the up quark mass in that particular basis 
(let’s call it canonical basis) can be rephrased in a more general basis : 

What we need is the bulk of the contribution to the up quark mass to be real 
in this basis, or in a general basis, not to contribute to  

On the other hand, there could be a smaller, arbitrary complex contribution in 
the canonical basis, provided it remains small, satisfying the above bound. 

These constraints are fulfilled if, for instance, the bulk of the up quark mass 
comes from instanton contributions. Indeed, 

One can easily see that          does not contribute to            .  It is real in the 
canonical  basis.   It could potentially solve the strong CP problem for a 
massless up-quark. 
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Diagrammatic representation of the Instanton 
contributions

Tiny up quark mass
✓QCD = arg[mu]
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Figure 1: The e↵ective mu generated by small instantons as a function of a hard IR cuto↵
on the instanton size. Thick line: RG-improved result. Thin line: Georgi-McArthur
approximation (partial RG-improvement). Dashed line: one loop result. In all cases we
take ms = 93 MeV, md = 4 MeV, set the renormalization scale to 2 GeV, and take the
limit of a large UV cuto↵, ignoring small corrections from heavy-quark thresholds.

We find, for the correction between the charm threshold and ⇢0,
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In this expression we include factors of ↵�/� generated by resumming higher-loop per-

turbative corrections at leading log (solving Eq. (1)). This expression di↵ers from that

in [12], which only included some of the higher-order perturbative corrections, resulting

in a numerically rather di↵erent e↵ect as a function of ⇢0.

The additive contribution to mu is shown in Fig. 1 as a function of ⇢0. If ⇢0 is as

small as 0.8 GeV�1, roughly the charm threshold, the contribution to mu from smaller

instantons is less than a hundredth of an MeV; mu = 2 MeV corresponds to ⇢0 = 1.5

GeV�1.

Although our computation improves on that of [12] for ultraviolet ⇢0, due to the

strong IR sensitivity, it is still not possible to draw any sharp conclusion about the full

nonperturbative contribution to the running mu. We can only conclude, as [12] did4, that

it is plausible a priori that instantons and other nonperturbative e↵ects could contribute

4Note that in [12] the limit ⇢0 ! ⇤�1 was taken.

5

Draper and Dine’14

These contributions 
can potentially be large 

enough 



` ✓QCD

mu = mH
u +minst

u

✓QCD ' sin ✓H
|mH

u |
|mu|

(1GeV)

In the canonical basis, assuming instanton contribution dominant

Bound on                   leads to a bound on tree-level up quark mass✓QCD

In general, one would expect a non-vanishing tree-level contribution

|mH
u | ⌧ |mu| ' |minst

u |

|mH
u |(1 GeV) sin ✓H < 6.5⇥ 10�4eV

If dynamical, this would be a solution to the strong CP problem



Ideal Situation in the canonical basisTiny up quark mass
✓QCD = arg[mu]
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Problems with the QCD Instanton PictureTiny up quark mass
✓QCD = arg[mu]

~2GeV

~0.7 - 1.0 GeV

|mu| ⇠ 10�3eV, ✓QCD ⇠ O(1)1012 GeV

|mu| ⇠ 3MeV

|mu| ⇠ 2MeV Lattice: A. Bazavov et al. 
S. Aoki et al. 

Lattice Determination of the 
up quark mass at scales of 
order 2 GeV contradicts this  
picture

Not everybody seems to be persuaded, see Bardeen, arXiv:1812.06041



Alternative Instanton Contributions ?

Is there a possibility of having UV instanton contributions, different from the 
regular, low energy QCD ones ? 

In this model,                                                                through the vev’s of 
bifundamental fields.   

Masses of up, strange and bottom quark obtained through instanton effects.  

CKM matrix may be properly obtained. However, flavor violating effects are 
present and push the scale of symmetry breaking to values of the order of 100 
TeV or larger.  

Bypass the lattice
✓QCD = arg[mu]

~2GeV

~0.7 - 1.0 GeV

|mu| ⇠ 10�3eV, ✓QCD ⇠ O(1)1012 GeV

|mu| ⇠ 3MeV

SU(3)1 SU(3)2 SU(3)3

q1L, u
c
R, d

c
R q2L, c

c
R, s

c
R q3L, t

c
R, b

c
R

P. Agrawal and K. Howe,1712.05803 

|mu| ⇠ 2MeV Lattice: A. Bazavov et al. 
S. Aoki et al. 

ms = 0 mb = 0

SU(3)1 ⇥ SU(3)2 ⇥ SU(3)3 ! SU(3)c

mu ' 0



Phenomenological Problems ?

To contribute to the up, strange and bottom masses through instanton 
effects, the gauge coupling strength should be sizable.  

However, at the symmetry breaking scale, one must have 

There is therefore a tension between the mass generation requirement and 
the fact that 

Agrawal and Howe assumed the addition of one or more additional SU(3) 
factors, containing a massless up quark, which gets mass through instanton 
effects.  These additional quarks get masses of the order of the TeV scale or 
larger for larger number of SU(3) factors.
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and the neutrino masses
The smallness of the tree-level value of the up-quark mass in this framework   
is reminiscent of the problem of the smallness of neutrino masses. 

In the normal hierarchy model, it is known that  

So, the constraints on the tree-level up-quark mass in this scenario are 
similar to the ones on the lightest neutrino masses  (                               ) 

If the bulk of the up-quark mass comes from instanton-like contributions, 
could there be a relation between the origins of                         ? 

Such a relation could occur within the context of the Dirac See-saw 
mechanism, which provides an explanation for the smallness of the neutrino 
Yukawa couplings in the Dirac case. 

mH
u

m⌫,1 ' 5⇥ 10�2eV, m⌫,2 ' 8⇥ 10�3eV, m⌫,3  few10�3eV

mH
u and m⌫

|mH
u | sin ✓H < 10�3 eV



Dirac See-Saw Mechanism
 The  standard, see-saw mechanism leading to the Weinberg operator 
generating Majorana neutrino masses, for arbitrary Yukawas  

In the Dirac see-saw mechanism, instead, one tries to suppress the Yukawa 
coupling.   This can be generated assuming that neutrinos couple to a heavy 
Higgs, which acquires a vev via a small mixing with the standard one 

To ensure that neutrinos and the up-quark couple to the heavy Higgs, we 
assumed the presence of a Z4 symmetry, with all SM particles being neutral 
under it, apart from  the following fields  

The charges of the right-handed bottom and strange quarks ensure that their 
tree-level contribution is zero.  These charges would be zero in the QCD 
instanton scenario. 
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Up-quark and Neutrino Dirac See-Saw

Dirac seesaw

QL uR

Φ

H S

νL νRYu,⌫

⇢

Z4 : 1

Z4 : 1

Z4 : 3

�SS
4 No axion-like Goldstone! 

P.-H. Gu and H.-J. He, hep- ph/0610275.

C. Bonilla, J. M. Lamprea, E. Peinado, 

and J. W. F. Valle, 1710.06498
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M. Carena, D. Liu, J. Liu, N.R. Shah, X. Wang, C.W.’19



Couplings and Scales

The up-quark and neutrino masses are therefore given by 

Hence, to obtain the heaviest neutrino for Yukawas of order one, we need 

On the other hand, to obtain the required small value of the tree-level up 
quark mass we need
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Hierarchy Problem

Similar to the standard see-saw, the Dirac see-saw mechanism suffers from 
a hierarchy problem  

Physical quadratic corrections to the Higgs mass parameter, induced by the 
coupling ρ, for instance, would destabilize the weak scale.  

Although this is somewhat orthogonal to the CP problem, it should be 
eventually addressed.  Also,

Dirac seesaw

�m2
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16⇡2
m2

�

leads to a physical contribution to the Higgs mass

Need engineering 

�

H

�� ⇠ 10�19

��



SUSY Extension 

One could in principle think about the supersymmetric extension 

In such a case, one could think about a Z3 symmetry. 

and therefore,  

where we assume that 

3

to get an observational consistent mass for the heavier
neutrino, where we have assumed Y⌫ to be real. Given
the bound on I[mH

u ] in Eq. (7), one obtains the bound
on the up quark Yukawa at the scale of mZ :

|Yu(mZ)| < 0.05 Y⌫

 
0.1

sin ✓HQCD

!
, (13)

where we have taken into account the running
of the up quark mass due to QCD interactions
|mu(mZ)|/|mu(1 GeV)| ⇠ 0.4. For the SU(3)3 instan-
ton configuration [14], the required vanishing tree-level
Yukawa coupling of strange and bottom quarks to the H
and � Higgs fields may be simply ensured by assigning
sR and bR the same Z4 charge as the one for uR.

As pointed out in Ref. [14], after the generation
of the proper CKM mixing angles, one obtains flavor
violating e↵ects that demand the SU(3)3 breaking
scale to be larger than a few 100’s of TeV. Moreover,
the corresponding o↵-diagonal Yukawa couplings lead
to instanton corrections to the imaginary component
of the quark masses. These corrections modify the
value of ✓QCD at the SU(3)3 instanton scale, and, if
they are evaluated at the scale ⇤i ⇠ O(few 100 TeV),
they are of the order of 10�11, and hence an order of
magnitude smaller than the current bound on ✓QCD.
One potential problem of the formulation presented is
that the hierarchy between m� and the electroweak
scale is not stable in the presence of ��,1,��,2, ⇢. To
address this problem, in the next section we present a
supersymmetric extension of this scenario.

Supersymmetric Extension. In the case of Supersym-
metry (SUSY), we assume the presence of a Z3 symme-
try, and charges �u : �1, �d : 1, uc

R : 1, ⌫cR : 1,
S : �1. All other fields are neutral under the discrete Z3

symmetry. The corresponding superpotential is given by

W = �Y ⇤
⌫ L�u⌫

c
R � Y ⇤

uQ�uu
c
R � y⇤eLHde

c
R � y⇤dQHdd

c
R

+ µHuHd +m��u�d + �Hu�dS +


3
S3. (14)
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the singlet S are forbidden by the holomorphicity of the
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which forbids terms like (vcR)
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where µ is the conventional µ term. In the following, we
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where we have omitted terms not relevant for our discus-
sion. Note that in the limit of  = a = 0 there would
be a U(1) global symmetry which would make the singlet
CP-odd scalar massless. More specifically, a global U(1)
Peccei-Quinn symmetry [17] is broken by the S2(Hu�d)⇤

and S3 terms, which are proportional to � or a. Since
�d acquires a very small vev, the mass of the CP-odd
scalar predominantly originates from a negative a.
By assuming that the SUSY-invariant mass m� is

much larger than all the soft masses, one can integrate
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where we assumed vu to be real, and the expression
between parenthesis on the left- and right-hand side of
Eq. (17) defines the low energy Yukawa couplings y⌫ and
yu, respectively. The necessary values of |m�| and |Yu,⌫ |
can be extracted from Eqs. (12) and (13) after replacing
|⇢/m�| by |�|, and v by vu. For the SU(3)3 case, as in
the non-SUSY scenario, the required vanishing tree-level
Yukawa coupling of strange and bottom quarks to the Hd

and �d Higgs fields may be simply ensured by assigning
scR and bcR the same Z3 charge as the one for uc

R.
Generically supersymmetric extensions lead to addi-

tional contributions to the electric dipole moments. In
the absence of flavor violation in the scalar mass pa-
rameters, they are proportional to the phases �if
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g̃ µ⇤ (Bµ)], where yfAf are the
scalar trilinear couplings, Mg̃ is the mass of the gluino,
Mi the gaugino masses, and Bµ the HuHd bilinear
mass parameter. The one-loop SUSY corrections to the
nEDM, controlled by �if

A and �B , may be parametrized
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where mSUSY denotes a common soft supersymmetry
breaking mass scale. There are also relevant contribu-
tions at the two-loop level, that lead to a somewhat more
complicated dependence on the SUSY and Higgs spec-
trum, as well as to possible cancellations between one
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magnitude smaller than the current bound on ✓QCD.
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supersymmetric extension of this scenario.

Supersymmetric Extension. In the case of Supersym-
metry (SUSY), we assume the presence of a Z3 symme-
try, and charges �u : �1, �d : 1, uc

R : 1, ⌫cR : 1,
S : �1. All other fields are neutral under the discrete Z3

symmetry. The corresponding superpotential is given by

W = �Y ⇤
⌫ L�u⌫

c
R � Y ⇤

uQ�uu
c
R � y⇤eLHde

c
R � y⇤dQHdd

c
R

+ µHuHd +m��u�d + �Hu�dS +


3
S3. (14)

Right-handed neutrino Majorana masses generated by
the singlet S are forbidden by the holomorphicity of the
superpotential. In addition, we have imposed R-parity
which forbids terms like (vcR)

3. The SUSY invariant po-
tential for the Higgs fields reads:

VSUSY = |µ|2|Hu|2 + |µHd + ��dS|2 + |m��u + �HuS|2
+ |m�|2|�d|2 + | S2 + �Hu�d|2, (15)

where µ is the conventional µ term. In the following, we
will take m� � µ ⇠ TeV. After SUSY-breaking, we have
the following soft-breaking interaction terms:

Vsoft = m2
�u

|�u|2 +m2
�d

|�d|2 +m2
SS

⇤S + · · ·
+ (�a�Hu�dS + b��

†
uHuS + aS

3 + · · ·+ h.c.),

where we have omitted terms not relevant for our discus-
sion. Note that in the limit of  = a = 0 there would
be a U(1) global symmetry which would make the singlet
CP-odd scalar massless. More specifically, a global U(1)
Peccei-Quinn symmetry [17] is broken by the S2(Hu�d)⇤

and S3 terms, which are proportional to � or a. Since
�d acquires a very small vev, the mass of the CP-odd
scalar predominantly originates from a negative a.
By assuming that the SUSY-invariant mass m� is

much larger than all the soft masses, one can integrate
out the heavy scalar fields �u,d : �u ⇠ � �

m�
HuS,

�d ⇠ � 1
|m�|2

⇣
µ�⇤HdS

⇤ + �a�H̃uS
⇤
⌘
, and obtain the

low-energy e↵ective Lagrangian for the Yukawa interac-
tions in the Dirac fermion notation:

Ly
e↵ = �Y⌫

�⇤S⇤

m⇤
�

¯̀
LH̃u⌫R � Yu

�⇤S⇤

m⇤
�

q̄LH̃uuR + · · ·(16)

from which we can read o↵ the neutrino and up quark
masses:

m⌫ ⇠
 
Y⌫

�⇤v⇤Sp
2m⇤

�

!
vup
2
, mH

u ⇠
 
Yu

�⇤v⇤Sp
2m⇤

�

!
vup
2
,

(17)
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where we assumed vu to be real, and the expression
between parenthesis on the left- and right-hand side of
Eq. (17) defines the low energy Yukawa couplings y⌫ and
yu, respectively. The necessary values of |m�| and |Yu,⌫ |
can be extracted from Eqs. (12) and (13) after replacing
|⇢/m�| by |�|, and v by vu. For the SU(3)3 case, as in
the non-SUSY scenario, the required vanishing tree-level
Yukawa coupling of strange and bottom quarks to the Hd

and �d Higgs fields may be simply ensured by assigning
scR and bcR the same Z3 charge as the one for uc
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Generically supersymmetric extensions lead to addi-

tional contributions to the electric dipole moments. In
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where mSUSY denotes a common soft supersymmetry
breaking mass scale. There are also relevant contribu-
tions at the two-loop level, that lead to a somewhat more
complicated dependence on the SUSY and Higgs spec-
trum, as well as to possible cancellations between one
and two loop contributions [21, 22]. These contributions
will be suppressed well below the current bounds without
fine-tuning the CP-violating phases if the masses of the
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Three Problems for weak scale SUSY breaking
Now, supersymmetry breaking introduces new CP violating parameters. 
Assuming flavor conserving scalar mass parameters, the PQ and R 
symmetries of these theories imply. Physical corrections are proportional to 
the phases  

Weak scale SUSY breaking  introduces non-decoupling corrections to the 
masses at the characteristic SUSY particle scale (after instanton effects 
have been considered) 

It leads to corrections to the electric dipole moment 

It leads to a suppression of the mass generated by instantons

dSUSY
n ⇠

✓
100 GeV

mSUSY

◆2

�if
A,B ⇥ 10�23 e cm

�CPYu,d ⇠ 1

(4⇡)2
�if

A,B

minst
f /

M3
g̃

⇤3
inst

�if
A = arg[MiA

⇤
f ], �B = arg[M⇤

gµ
⇤(Bµ)],



Solution to these Problems

These problems are solved if we only attempt to solve the large hierarchy 
problem, and not the little one. 

Assume that supersymmetry breaking occurs at scales of the order of 100 
TeV, before the instanton effects take place.  

One can then integrate out the SUSY particles and provided the discrete 
symmetries are preserved, obtain an effective theory similar to the non-
SUSY case.  

Of course, if the QCD instanton solution would be possible, only the neutron 
and electron electric dipole moments would be a (well known) problem.



Consequences of this proposal

• Neutrinos would be (pseudo) Dirac. Majorana contributions, although   
non-zero, should be small. 

• This implies no signal in near future neutrino-less beta decay experiments.  

• While correlating the physical parameter             with the small tree-level 
up quark and neutrino masses, one obtains a contribution to the neutron 
electric dipole moment. In what we called the canonical basis,

✓QCD

✓QCD =
Im[mH

u ]

|mu|



 Neutron Electric Dipole Moment
and the up-quark (neutrino) mass

dn =
Im[mH

u ]

6.5⇥ 10�4eV
3⇥ 10�26e cm

Im[mH
u ] = |mH

u | sin(✓HQCD)

If the assumed correlation between the imaginary component of the up quark mass and 
neutrino masses holds, one or more of these experiments is expected to see a signal  !!



Near Future
Neutron Electric Dipole Moment Experiments

nEDM experiments
3⇥ 10�26e cmPresent Limit

Ultracold Neutrons 
are being used  
to eliminate systematic 
errors

Measurement of the electric dipole moment : Basic Idea is to measured the Larmor 
precession with parallel and antiparallel electric and magnetic fields

2µnB ± 2dnE, dn =
h�⌫

2 E



Conclusions

We presented a possible correlation between neutrino masses and the 
imaginary component of the up-quark mass in a framework in which instanton 
like contributions form the bulk of the up-quark mass  

Dynamics : Dirac see-saw relates  

A non-vanishing value of the neutron electric dipole moment is predicted 

It is naturally within the reach of the next generation of experiments

m⌫ and mH
u


