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Ergodicity and its breaking in classical systems

Ergodicity: Ergodicity breaking
System explores full phase space

Chaotic systems Classically integrable systems

Described by statistical mechanics :
Regular motion

Do not explore full phase space
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Ergodicity in quantum many-body systems

Prepare system in some state ‘?,U> T l T T l T T l

Unitary evolution o iH

At long times, any sub-system thermalizes

<A/ VA

Thermal

(but the system is in a pure quantum state)

In ergodic systems, individual many-body eigenstates are thermal.

Observables are given by microcanonical ensemble

Deutsch’91, Srednicki’94, Rigol et al’'08
System acts as a thermal reservoir for its subsystems

Are all many-body systems ergodic?
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This talk: Insights from entanglement
Describe many-body localized eigenstates n,

Universal dynamical properties

Many-body localized phase: a non-ergodic phase of matter not
described by statistical mechanics
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New experimental systems
Isolated & quantum-coherent. Tunable interactions and disorder

Nuclear

-Cold atoms, optical lattices

-Polar molecules

Driving
field

-Spin systems (NV-centers in diamond)

Disorder-Induced Localization in a Strongly Correlated Atomic Hubbard Gas

S.S. K()nd()v,l'* W. R. MCGehee,l W. Xu,l and B. DeMarco'
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Observation of many-body localization of interacting fermions in
a quasi-random optical lattice

Michael Schreiber!:?2, Sean S. Hodgman!:2, Pranjal Bordia'2, Henrik P. Lischen':?2, Mark H. Fischer?, Ronen
Vosk?, Ehud Altman?, Ulrich Schneider!:2 and Immanuel Bloch!:?

!Fakultat far Physik, Ludwig-Maximilians-Universitat Manchen, Schellingstr. 4, 80799 Munich, Germany

2Max-Planck-Institut far Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany

*Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Studying many-body localization experimentally now possible!
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Entanglement: a tool to characterize/classify ground states

USES OF A
DEAD CAT

Towards a complete
classification..

|
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Understand different dynamical regimes?
Need to understand highly excited states
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Entanglement propagation in ergodic systems
x(t)=vt

Light-cone-like spreading of correlations
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Initial product states
Linear growth of entanglement entropy

I
Sent ~ N(X(Z)) x1 Lieb,Robinson’72, Hastings’04, Calabrese,Cardy’05

Ballistic! Unlike diffusive charge/energy transport Sem

Recent experiments:

Light-cone-like spreading of correlations in a
quantum many-body system > 1

Marc Cheneau', Peter Barmettler”, Dario Poletti’, Manuel Endres', Peter Schau8', Takeshi Fukuhara', Christian Gross',
Immanuel Bloch™?, Corinna Kollath®* & Stefan Kuhr'

Observation of entanglement propagation in a quantum many-body system

P. Jurcevic,"%* B. P. Lanyon, %:* P. Hauke,'? C. Hempel,":2 P. Zoller,!:* R. Blatt,-? and C. E Roos! % ¥
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Jordan-Wigner
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A simple model of many-body localization

Jordan-Wigner

Spinless interacting 1D fermions — Random-field XXZ spin-1/2 chain

Pt

h,
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c; c,,, +h.clH VE nn, | H= EhiSi +
. ; :

J, Y (7S5 +h.c)
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Many-body localization at strong disorder (numerics)

At weaker disorder, ergodic phase

Oganesyan, Huse’'07, Prosen et al’'08, Pal,

Huse’10, Monthus, Garel’10,

Bardarson,Pollman,Moore’12, Serbyn,
Papic, DA'13, Luca, Scardicchio’13
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Hamiltonian evolution
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Recent numerics: entanglement propagation in localized systems

Hamiltonian evolution

Pt il =

-Anderson-localized: S, .(¢) = const

-Many-body localized: slow growth of entanglement

S, (1) xlogt

-"Glassy” spread of entanglement

-Very long time scales
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Recent numerics: entanglement propagation in localized systems

Hamiltonian evolution

R YA AR

-Anderson-localized: S, () =< const L

(2)o.s;
S () < logt
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-"Glassy” spread of entanglement
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-Entanglement extensive in system size
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Recent numerics: entanglement propagation in localized systems

Hamiltonian evolution

R YA AR

-Anderson-localized: S, () =< const L

(2)os;
S () < logt

04f

-"Glassy” spread of entanglement
-Very long time scales =

-Entanglement extensive in system size, non-thermal

Very slow equilibration? Slow particle
transport? 0w —

0 10

10 Jt/h 10

Znidaric et al’08, Bardarson, Pollmann, Moore’12
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The mechanism of entanglement growth: Toy model

0)

1
|1/J0> = E(cf +c,)(c; +c))

Assume weak interactions

0)+O0(e™)

Eigenstate |of)=c,c;

Energy: E z=FE,+E;+ CaﬁVe_X/g

Reduced density matrix 1 1 coswt
p()=—
2| coswt 1
V e 2 R e
w~—e tdeph ~ ~ €
h V

Particles can create entanglement without moving

Serbyn, Papic, Abanin PRL ’13
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Case of many particles

Intuition: Eigenstates at small V are to non-interacting eigenstates
Non-interacting: occupation numbers
O O O O
n, = <c;ca> =0,1
- ’—\

Interacting: obtain by small local deformations / @\ / @ e\ /® e\ /@
n, = <c;ca> ~ 0,1

(04

Energy: perturbation theory in V

IR,—Rpg| IR,-Ry+IR,—Ry|
— & 2 3
k= EEana +VE C s, g€ +V ECaﬁynanﬁnye
1-body 2-body 3-body
energy interactions interactions

Interactions of far-away particles are exponentially small
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Initial product state is a superposition of many eigenstates
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The laws of entanglement growth

Initial product state is a superposition of many eigenstates

Jo\ /ol ) gﬂ\g ®

1(x)~ Ee” d
V entangled
Jo ol | [
Vit ) 1% g
4
S (t)=Clog— C Initial-state ) ~log—
ent( ) g % del[:l)endent X( ) og 7

Predict disorder, interactions, initial state dependence

Confirmed by numerics
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We considered weak interactions (starting from single-body-
localized phase)

Can we describe localized phase at strong interactions?
Is dynamics universal?

YES. Key: In the MBL phase there are infinitely many local integrals
of motion
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Constructing local integrals of motion

O S A AR
H=H,+ E.Ixsl s +h.c. @Xﬁ}@ﬁ@» O

Local unitary

Hamiltonian diagonalized by a sequence of local unitary transformations

U'HU =H,,,

Local integral of motion U§ZU _/\_
[ Y A A

’\Z

[(z!,H]=0 [7.,7!]=0



Universal Hamiltonian of many-body localized phase

[f;,H] = (0 - Hamiltonian depends only on f; ‘s

H = ZHiTzi + ZHijTjTg + ZHijkT:ﬁ ;.ZT: + ..

ijk



Universal Hamiltonian of many-body localized phase

[‘Lcé,H] = (0 - Hamiltonian depends only on 1?2 ‘s
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i ij
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Universal Hamiltonian of many-body localized phase

[‘Lcé,H] = (0 - Hamiltonian depends only on 1?2 ‘s

H = E H;T. + E Hi;T,m] + E Hzajk'r;'rng-I-..
i i

ijk

H;; o< exp(—|i — jla/€) , random

A\ Z
/\l_
T’ —NT” -Ni” -Ni” -NT" —Ni" —NT" —NT’ o

Exponentially decaying (random) interactions - dephasing

Serbyn, Papic, Abanin PRL'13
Huse, Oganesyan, arXiv’13
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Structure of localized eigenstates

Conjecture: MBL eigenstates are obtained from product states by quasi-local
unitary transformations

Implication 1: MBL phase is robustly integrable

Implication 2: Eigenstates have low entanglement entropy,
Bauer, Nayak, JSM’'13; Serbyn, Papic, DA PRL13

L) = Const

5 ent( ) ¢ Ergodic systems:
/\ “volume-law” of excited states

® @ @ Sent (L) ~ L

Entanglement limited to boundary,
similar to ground states in gapped systems

MBL eigenstates can be efficiently simulated clasically

Matrix-product states, tensor networks . _ _ .
Chandran, Carrasquilla, Kim, DA, Vidal, arXiv'14

Pekker, Clark’14



Universal dynamics & experimental signatures
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Universal dynamics & experimental signatures

H=Y Hri+Y Hyrirl+Y Hpririth+.
i ij

ijk

Quantum quench (e.g. from a product state)

-At long times, steady non-thermal state T " / \

“Local diagonal ensemble”

| entangled
T (1)) = Const :
Q) SRSV P R
Memory retained, ergodicity breaking < >
x ~ log(t)

-Logarithmic spreading of correlations

Sent (t) ~ lOg(t)
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Diagonal ©y,(t) = Const Off-diagonal ©0;,() a sum of 2"’ random terms

(vi(1)) = Const o1 (0]~ 2" o (zl @)~ 1

a



Experimental signature: local observables
—1Ht

e
57'\»/\7‘3«34'\:> —A /N2y LA
Eff. Spin I: reduced density matrix ,025[5 (1)? N(1) ~ log(?)
Diagonal 0y,(r) = Const Off-diagonal oy,(?) a sum of 2"’ random terms
<Ti (t)> = Const 0],(0)] ~ 2" 1 ‘<1—’(t)>‘ ~ 1
z t - x p
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Experimental signature: local observables
—1Ht

gwx R S AN P
N(t) ~ log(?)

Eff. Spin I: reduced density matrix Piﬁ (1)?

2N(t)

Diagonal ©y,(t) = Const Off-diagonal o;,(t) a sum of random terms

<772 (t)> = Const ‘ph(;)‘ NP2 octia ‘<7i (t)>‘ _ tia

Physical observables are superpositions of Ti,y,z operators
A A A 1
(0)=0 [(0w)~(oe)] = ;
4

Serbyn, Papic, DA PRB’14

Alternatives: revivals of local observables Vasseur, Parameswaran, Moore, arXiv'14
Modified spin echo Serbyn et al. PRL'14



Distinct localized phases at high energy
Disordered transverse-field 1D Ising model Z, symmetry
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Distinct localized phc:ses at high energy
Disordered transverse-field 1D Ising model Z, symmetry

H = EJO’ al+l+hza +J Eaa J, =J=x0J,

J>>h Ground state: J<<h
Spin glass Paramagnet
Breaks Z, Does not break Z,

MBL protects quantum order at finite enerqy density EJ‘;‘T‘IG g;fJaPrEOBnm

Pollmann, PRL’14

Two distinct MBL phases: E A
L

Spin-glass: Paramagnet:
Integrals of motion ~ Gl.z .O.Mare ~ Gf

Symmetry broken in individual eigenstates, but
not in thermal ensemble

Dynamical critical points characterized using > 7
strong-disorder RG  \/osk, Altman PRL'14:
Pekker et al PRX'14



Localization-protected topological order

MBL can protect topological order at finite energy density =~ Huse etal PRB'13
Bauer, Nayak JSM’'13

Topological localized states with
Protected coherent edge modes at high energy

Bahri et al, arXiv'13
Chandran et al, PRB’14

Not all symmetry-protected/topological phases can be fully MBL

(e.g., chiral states) Slagle et al, arXiv’'15

Potter, Vishwanath, arXiv'15



Open questions

Phase transition from MBL to ergodic phase? Ehud Altman’s talk

|s disorder necessary? Localization in translationally invariant systems?

Huveneers, De Roeck’13, Shiulaz, Muller’13,
Yao et al'14, Papic, Stoudenmire, DA'15

Other mechanisms of ergodicity breaking?
Non-ergodic phases which are not fully MBL?

Altshuler et al’06-,
Grover, Fisher’13, Pino, Altshuler, loffe’15
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Localization without quenched disorder?

(Huveneers, de Roeck’13, Schiulaz, Muller’13)

Two coupled XXZ spin chains, “fast” O’iZ and “slow” SiZ

A <<l

PNV YA
}':*IllTllT

Z . Z
H, =W20isi
i

Localizationat A <<1 ?



Localization without quenched disorder?

(Huveneers, de Roeck’13, Schiulaz, Muller’13)

Two coupled XXZ spin chains, “fast” O’iZ and “slow” SiZ

A <<l

PNV YA
}':‘IllTllT

Z . Z
H, =WEGiSi
j

Localizationat A <<1 ?

An argument for ergodicity breaking:
Configuration of slow spins creates “disorder” for fast spins

Have to make multiple moves to resonantly couple states
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Numerical results: no MBL, but slow dynamics
45 0eF
4 5
as| o O05f
el
—~ 3r 12 04
E o5l | ‘
. 25 | oal Bl A,A=0.0005*|
Ll ™ . B, =0.00050
-z, AA=01m=
15} 02 B,A =01+
1} AA=05.
0.1 B,A=05v
ost af f%ic 0 A=10e [ T &% 4 AA=10-~
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Numerical studies: If MBL exists, it only exists at tiny A~001 Consistent with
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MBL in translationally inv. systems does not appear robust

BUT: equilibration can be still very slow



Numerical results: no MBL, but slow dynamics
45 06F
4 -
35} 05}
—~ 3r 04}
J: H
U.s? | 03l Bl A, A =0.0005 *|
N, : L B,)\=0.00050
AA=01m=
15} 02F B,A=01-+"
(L AA=054
01 ¥ B,A=05v
05 1 AA=10-+
0 0 ;. L 2 U,/\? 1.0 ¢
0. 0.01 1 100 10000 1e+06 10+08 18+10 1e+12

Int Int
Papic, Stoudenmire, DA, arXiv'15

Numerical studies: If MBL exists, it only exists at tiny A~001 Consistent with

: : : Yao et al'14
MBL in translationally inv. systems does not appear robust

BUT: equilibration can be still very slow

A rigorous result for a Bose-Hubbard-type model (high T = many non-resonant configurations)

O'(T) decays faster than any power-law as a function of T
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Find systems with exponentially slow equilibration?

Role of geometric frustration?

Nur Connections to glasses? th
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Summary

-Many-body localization: a mechanism for ergodicity breaking
-Integrability, area-law for eigenstates

-Dynamics is universal:“glassy” entanglement growth, power-law
relaxation of physical observables

-Many open questions: Transition; Transl. inv. systems; Other
mechanisms of ergodicity breaking?
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