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Ergodicity in quantum many-body systems 

System acts as a thermal reservoir for its subsystems 

Prepare system in some state   

e−iHt
 
At long times, any sub-system thermalizes 
(but the system is in a pure quantum state) 

Unitary evolution 

Eigenstate thermalization hypothesis:  
In ergodic systems, individual many-body eigenstates are thermal.  
Observables are given by microcanonical ensemble    
 Deutsch’91, Srednicki’94, Rigol et al’08 

Thermal 

Are all many-body systems ergodic? NO!  

ψ
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Quantum memory effects à  
Wave functions become localized 
  
 
 
Absence of diffusion à Anderson  
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A toy example of ergodicity breaking 
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Universal dynamical properties 
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-Cold atoms, optical lattices  
 
-Polar molecules  
 
-Spin systems (NV-centers in diamond) 
 

Studying many-body localization experimentally now possible! 

New experimental systems 
Isolated & quantum-coherent. Tunable interactions and disorder 

EXPERIMENTS: Paris, Florence, Urbana, Munich 
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Entanglement: a tool to characterize/classify ground states 
 

Understand different dynamical regimes? 
Need to understand highly excited states 

Entanglement plays a central role: eigenstates, dynamics 

Towards a complete  
classification.. 
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Sent

t0

Light-cone-like spreading of correlations 

Linear growth of entanglement entropy 
Initial product states 

Ballistic! Unlike diffusive charge/energy transport 

Lieb,Robinson’72, Hastings’04, Calabrese,Cardy’05   

Recent experiments: 

x(t) = vt

Sent ~ N(x(t))∝ t
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Many-body localization at strong disorder  (numerics) 
At weaker disorder, ergodic phase 

Oganesyan, Huse’07, Prosen et al’08, Pal, 
Huse’10, Monthus, Garel’10, 
Bardarson,Pollman,Moore’12, Serbyn, 
Papic, DA’13, Luca, Scardicchio’13 
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L R-Anderson-localized:  

Hamiltonian evolution 

Recent numerics: entanglement propagation in localized systems 

Sent (t) ≤ const

-Many-body localized: slow growth of  entanglement    

Sent (t)∝ log t

-”Glassy” spread of entanglement 
 
-Very long time scales 
 
-Entanglement extensive in system size, non-thermal  

Very slow equilibration? Slow particle 
transport? 

Znidaric et al’08, Bardarson, Pollmann, Moore’12 
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+cβ

+ 0 +O(e−x/ξ )

Assume weak interactions 
 
Eigenstate  
 
Energy: Eαβ = Eα +Eβ +CαβVe

−x/ξ

tdeph ~
2π
ω
~ 
V
ex/ξ

Interaction-induced dephasing à entanglement generation 
Particles can create entanglement without moving 
 

The mechanism of entanglement growth: Toy model 

ρ(t) = 1
2

1 cosωt
cosωt 1

!

"
#

$

%
&Reduced density matrix 

ω ~ V

ex/ξ

Serbyn, Papic, Abanin PRL ’13 
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Intuition: Eigenstates at small V are “close” to non-interacting eigenstates 

Energy: perturbation theory in V 

E = Eαnα +∑ V Cαβnαnβe
−
|Rα−Rβ |

ξ∑ +V 2 Cαβγnαnβnγe
−
|Rα−Rβ |+|Rγ−Rβ |

ξ∑ ...

1-body  
energy 

2-body  
interactions 

3-body  
interactions 

nα = cα
+cα = 0,1

Non-interacting: occupation numbers 

Interacting: obtain by small local deformations 

Interactions of far-away particles are exponentially small 

nα = cα
+cα ≈ 0,1
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The laws of entanglement growth 

Initial product state is a superposition of many eigenstates 

t(x) ~ 
V
ex/ξ

Sent (t) =C log
Vt


C Initial-state  
dependent 

Predict disorder, interactions, initial state dependence 
 
                                          Confirmed by numerics 

entangled 

x(t) ~ logVt

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We considered weak interactions (starting from single-body-
localized phase) 
 
Can we describe localized phase at strong interactions?  
Is dynamics universal?  
 
YES. Key: In the MBL phase there are infinitely many local integrals 
of motion 
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Constructing local integrals of motion 

H0 = hi
i
∑ si

z
i
z + Jzsi

z
i
zsi+1

z
i
z

H = H0 + Jxsi
+
i si+1

− + h.c.
i
∑

si
z = ±1

τ̂ i
z =Uŝi

zU+

U+HU = Hdiag

Local unitary 

Hamiltonian diagonalized by a sequence of  local unitary transformations 

Local integral of motion ξ
τ̂ i
z

“Effective spins”, form a complete set 

[τ̂ z
i ,H ]= 0 [τ̂ z

i , τ̂ z
j ]= 0
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Universal Hamiltonian of many-body localized phase 

Exponentially decaying (random) interactions à dephasing 
Quantum bits which cannot relax 

Serbyn, Papic, Abanin PRL’13 
Huse, Oganesyan, arXiv’13 

[τ̂ z
i ,H ]= 0 à Hamiltonian depends only on        ‘s  τ̂ z

i

τ̂ i
z τ̂ j

z

, random 
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Structure of localized eigenstates 

Conjecture: MBL eigenstates are obtained from product states by quasi-local 
unitary transformations 

Implication 1: MBL phase is robustly integrable 

Implication 2: Eigenstates have low entanglement entropy, “area-law” 

Ergodic systems:  
“volume-law” of excited states 

Sent (L) ≤Const

Entanglement limited to boundary,  
similar to ground states in gapped systems 

Sent (L) ~ L

MBL eigenstates can be efficiently simulated clasically  
Matrix-product states, tensor networks  

Chandran, Carrasquilla, Kim, DA, Vidal, arXiv’14 
Pekker, Clark’14 

Bauer, Nayak, JSM’13; Serbyn, Papic, DA PRL’13 
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Universal dynamics & experimental signatures 

-At long times, steady non-thermal state 
 
“Local diagonal ensemble” 
 
 
 
Memory retained, ergodicity breaking 
 

τ z
i (t) =Const

Sent (t) ~ log(t)

Quantum quench (e.g. from a product state)  

x ~ log(t)

 -Logarithmic spreading of correlations  
 

entangled 

Universal logarithmic growth of entanglement 
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Eff. Spin I: reduced density matrix  ρ
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↑↑(t) =ConstDiagonal  

τ z
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Serbyn, Papic, DA PRB’14 

Alternatives: revivals of local observables  
Modified spin echo 

Vasseur, Parameswaran, Moore, arXiv’14 

ρ I
↑↑(t) =ConstDiagonal  

τ z
i (t) =Const

Serbyn et al. PRL’14 
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H = Jiσ i
zσ i+1

z +
i
∑ h σ i

x +
i
∑ J2 σ i

zσ i+2
z

i
∑ Ji = J ±δJi

J >> h J << h
Spin glass Paramagnet 
Breaks  

Z2 symmetry 

Z2 Does not break Z2

Ground state: 

Glass 

Paramagnet 
h
J

Huse et al PRB’13 
Kjall, Bardarson,  
Pollmann, PRL’14 

MBL protects quantum order at finite energy density 

Two distinct MBL phases: 
 
Spin-glass:   
Integrals of motion   
 

E
L

~σ i
z~σ i

z
Paramagnet:  
I.O.M are 

Symmetry broken in individual eigenstates, but  
not in thermal ensemble  

Dynamical critical points characterized using 
strong-disorder RG Vosk, Altman PRL’14;  

Pekker et al PRX’14 



Localization-protected topological order 

MBL can protect topological order at finite energy density Huse et al PRB’13 
Bauer, Nayak JSM’13 

Topological localized states with  
Protected coherent edge modes at high energy 

Bahri et al, arXiv’13 
Chandran et al, PRB’14 

Not all symmetry-protected/topological phases can be fully MBL 
(e.g., chiral states) Slagle et al, arXiv’15 

Potter, Vishwanath, arXiv’15 



Open questions 
Phase transition from MBL to ergodic phase?  
     
 
Is disorder necessary? Localization in translationally invariant systems? 
 
 
 
Other mechanisms of ergodicity breaking?  
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Two coupled XXZ spin chains, “fast”           and “slow”  

J ~1

λ <<1

H int =W σ i
zsi

z

i
∑

si
zσ i

z

Localization at                ? 
 

λ <<1

(Huveneers, de Roeck’13, Schiulaz, Muller’13)     

An argument for ergodicity breaking:  
 
Configuration of slow spins creates “disorder” for fast spins 
 
Have to make multiple moves to resonantly couple states   
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A rigorous result for a Bose-Hubbard-type model (high T à many non-resonant configurations) 

σ (T )
Huveneers, De Roeck, CommMathPhys’14 

decays faster than any power-law as a function of T 

Find systems with exponentially slow equilibration?  
 
Role of geometric frustration? 
 
Connections to glasses? 



Summary  

-Many-body localization: a mechanism for ergodicity breaking 
 
-Integrability, area-law for eigenstates 
 
-Dynamics is universal:“glassy” entanglement growth, power-law 
relaxation of physical observables 
 
-Many open questions: Transition; Transl. inv. systems; Other 
mechanisms of ergodicity breaking?  
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MESSAGE: ENTANGLEMENT GIVES INSIGHTS INTO 
ERGODICITY AND ITS BREAKING 
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The End 

Thank you! 


