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The ground state problem

Given a local Hamiltonian H, “determine” its
ground state and compute physical properties

Is there any way this problem could have a
general solution? Very hard to imagine,
provably false in some cases, yet | hope to
convince you that for a very broad class of H
the answer is YES!

[QMA hard: Gottesman et al., also glassy states, etc.]



Families of Hamiltonians/states

Throughout we consider families of Hamiltonians
indexed by system size: { Hy, }

These Hamiltonians have corresponding ground

states: {|yr,) }

We will study transformations between states at
different L; product states can always be
subtracted or added at will: |0}, VM



DEFINITION AND PROPERTIES



“RG” construction of wavefunction

L sites
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L sites ,
L black sites are interleaved with L blue sites using a
quasi-local unitary. The output is the black state on 2L
sites.
v
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slight abuse of
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s source RG fixed point

A d-dimensional s source RG fixed point is
a system where a ground state on (2L)¢
sites can be constructed from s copies of
ground states on L?sites times some
unentangled degrees of freedom by acting
with a quasi-local unitary

d=2, s=1
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s source RG definition again

A family of states is s source fixed point if
(for large enough L):

d-torus d-torus
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Some properties

S(A) = —tr(palogpa)
Recursive entropy S(ZR) SS(R) + kR4-1
bounds: S(ZR) SS(R) L k,/Rd—l

result uses [Van Acoleyen-Marien-Verstraete]
(G(L) = ground state degeneracy

Ground state

degeneracy lemma G(QL) — G(L)S

(for gapped case):



Local operators = local operators

Yar) = U(|¢r)]0)")

<¢2L Oloc w2L> — <¢L Oloc‘¢L>

iterate: can compute local expectation value in O(log(L)) steps

ONloc — <O LUTOZOCU‘O>L

O remains local because:

1. U spreads O by at most the speed of light times a time of order one
2. The number of sites is halved at every step



EXISTENCE RESULTS



Example: trivial insulator, s=0

One particle per unit cell, alternating weak bonds:
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4
Deform weak
. . . . . . . . bonds to zero



Example: (gapped) gauge theory, s=1

Toric code, discrete gauge theory, d>2, ...
V4 @ — CNOT [Aguado-Vidal, Gu-Levin-BGS-Wen]

U3

U9

Topological quantum liguid: insensitive to
arbitrary smooth deformations of space



Tool: adiabatic expansion

Given: H sanped
H(0) () >H (1)

ground state on size L (and ‘ w 77 ground state on size 2L
product states)

4(0)) = [ ) |0y —DE (1)) = [thar)

— Exact: use Hastings-Wen quasi-adiabatic
tech

Note: this may not be the most efficient U. However, this is a non-variational
way to construct the ground state!



Example: chiral insulators, s=1

Examples:
1. Integer quantum Hall, Chern insulators
2. Massive Dirac fermion, d=2

Sites: L? — L*/2 — L?/4
[BGS-McGreevy ‘14]



Example: CFTs, s=1 [CONJECTURE]

Some evidence:
1. Consistent with structure of
entanglement and correlations
2. Correlations easy to include
3. MPS approximation results in 1d [verstraete-Cirac]

Later: provably true for some other
gapless (but non-relativistic) scale
Invariant states ...



Example: FS, s=2° [CONJECTURE]

* Conjecture: Metals (Fermi liquids) in d
dimensions are fixed points but require
multiple copies of size L to make size 2L

S = [db [dtdkcl(k,t)(i0, — vpk)co(k,t)

k
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S./L

S log(tr( )) general definition, probes spectrum

form of S for
S ‘L T a3 La4 COS(G’ L) a metal, d=2

[Klich-Gioev PRL 06, BGS PRL ‘09]
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Example: “square root states”, s=1

H = Z (—er -+ 6_6JZT Z”"/Enn(?") Z"”‘/)

‘ISlﬂg) \/_ Z GBT ZTT/ Or0,/ ‘(7)

Hamiltonian is positive H — Z’l” Q’I“) Q,r. 2 O

Use invariance of statistical
partition function: = ‘ 9 s=1
[Levin-Nave] y

[BGS-Xu-McGreevy soon]




EXTENSIONS, COMMENTS, AND
WRAP-UP



What is s?

 Gapped systems: usually s=0 or s=1

* Gapless systems, scaling to a point:
likely s=1

. Metals and NFLs: likely s=2"

Is there a principled way of determining s?

Intuition: lots of entanglement = lots of
low lying states



Scaling theory of critical states

g(T) Y T— 1/@ correlation length

d—0
1 thermal entro
S(T) ~ (E) ~ T ~ density Y

H_,  half space gs density

Key idea: o log(PA,gS) ™ Zx T(g;) matrix (max ent)

0<d—1— Sgg ~ area

__0b
0=d—1— Sgg ~ area*log § =2

[BGS-McGreevy ‘15]



Evidence for generality of s sourcery

* Rigorous constructions

e Sufficient to capture correlations and
entanglement entropy

 Some numerical evidence

* Even sufficient to capture effective
Schmidt rank ...



Effective Schmidt rank

Q: What is the physical meaning of
entanglement entropy?

Al: nS(p) is the cost to compress p®"in
the limit of a large n number of copies
A2: For a single copy the answer is

H:.  (p)= min log(rank(o))

max
lo—pll1<e

HE,..(A,CFT gs) = S(A) (1 +0O (\/15%4))))

[Czech-Lashkari-Hayden-Swingle ‘14, BGS-Hayden soon]



Summary

* An RG inspired framework for the exact
description of ground states — “efficient”
calculation of physical properties,
mounting evidence of generality

e Stay tuned for extensions to thermal
states, etc. and results about CFTs, etc.

* A possibly hard case is FS+gauge field ...

* Foundation for holography via tensor
networks?



