Entanglement in Condensed Matter (Overview)

Ashvin Vishwanath UC Berkeley

Talk Plan

- Introduction
- Overview of Overviews

Main Seminar Room

- 09:00AM Horacio Casini (Centro Atomico Bariloche) C-theorems and entanglement entropy (overview)
 09:00AM Guifre Vidal (Perimeter Institute) Tensor Networks, renormalization and Holography (overview)
- 01:30PM Dmitry Abanin (Perimeter Institute) MBL: integrability, entanglement and dynamics (overview)

 Case Study of Entanglement as a tool - topological band structures. Filling enforced `quantum band insulator'.

Introduction

Qualitative properties - of a quantum many body system.

$$N \to \infty$$

 Classifying *phases* - distinct phases are always separated by a phase transition (singular point).

Classifying Phases - An Analogy

Can they be connected?

- NO
- Parity of permutation (+ row of blank) is conserved.

Entanglement and Many Body Hilbert Space

$$|0
angle \otimes |1
angle$$
 vs $\frac{1}{\sqrt{2}}\left[|0
angle|0
angle + |1
angle|1
angle
ight]$

- Product states no entanglement.
 - With N spins need to specify just N bits for a product state.

- Generic state in Hilbert Space need to specify 2^N complex numbers.
 - Arises due to Entanglement makes quantum many body physics hard/rich.

Conventional Phases

- Phase distinction due to symmetry breaking. Captured by order parameter.
- Classify phases different ways to break symmetry (230 types of crystals)
- Measure order parameter experimentally to diagnose a phase.
 All 230 realized in nature!
- Essentially weak entanglement/product state.

General Distinctions Between Quantum States?

 Phase distinction due to symmetry breaking. Captured by order parameter. Phase distinctions due to different patters of entanglement

Classify phases -

 Helps classify and discover new phases (topological phases)

 Measure order parameter experimentally

Experimental measurement?

03:40PM Markus Greiner (Harvard University)

Entanglement detection through interference of quantum many-body twins in ultra cold atoms

2. Overview of Overviews

Entanglement in Condensed Matter

Thermal Phases

Thermal Phases

- Volume law entanglement entropy of a highly excited state related to thermal entropy. (Eigenstate Thermalization hypothesis - Deutsch, Srednicki)
- Many body localization one example of a non thermal phase with nonzero energy density.

01:30PM Dmitry Abanin (Perimeter Institute) MBL: integrability, entanglement and dynamics (overview)

- Quantum phase transition from thermal to localized phase?
 (Classical to Quantum transition).
- 03:00PM Ehud Altman (Weizmann Institute) Universal dynamics and entanglement patterns near a MBL transition
- 03:40PM A. Chandran (Perimeter Institute) *Thermalization versus localization in a solvable circuit model*
 - General constraints from strong subadditivity (Grover)
 - New phases with volume law entanglement? (Grover/Fisher)

Entanglement in Condensed Matter

Gapless states

Entanglement of Gapless States

- Entanglement in Conformal Field theories
 - c & f & a from entanglement.

10:10AM John Cardy (University of Oxford) *The entanglement gap in CFTs* 09:00AM Horacio Casini (Centro Atomico Bariloche) *C-theorems and entanglement entropy (overview)*

connections to condensed matter

03:00PM Tarun Grover (KITP) Entanglement, RG flows and the stability of quantum matter

- Entanglement of Phases with Fermi surfaces
 - Area law violation in fermi liquids and non-Fermi liquids

Entanglement in Condensed Matter

Gapped states

Gapped Phases - Topological order

$$H = -\sum_{\blacksquare} \sigma^z \sigma^z \sigma^z \sigma^z - \sum_{\blacksquare} \sigma^x \sigma^x \sigma^x \sigma^x - h_x \sum_{\blacksquare} \sigma^x - h_z \sum_{\blacksquare} \sigma^z$$

A spin model with no spin symmetry

But two phases! How to distinguish?

Kitaev; Tyupitsin et al.; Fradkin and Shenker.

Topological Entanglement Entropy

Gapped Phase with topological order.

eg. deconfined gauge theory. Smooth boundary, circumference LA:

Topological Entanglement Entropy

(Levin-Wen; Kitaev-Preskill)

$$S_A = aL_A - \gamma$$

 $\Upsilon = Log D$. (D: total quantum dimension). Z_2 gauge theory: $\Upsilon = Log 2$

Gauss Law on boundary – no gauge charges inside. Lowers Entropy by 1 bit of information.

Applications to Kagome antiferromagnet (Yan-Huse-White/Jiang-Balents)

3. Case Study of Entanglement as a tool in Condensed Matter - Topological Phases of Free Fermion Insulators

Filling Enforced Quantum Band Insulators

- Atomic picture of a band insulator
 - electrons localized on atomic site. Does this always apply?
 - not for topological phases nontrivial entanglement in real space. No atomic picture

Chern insulator and Entanglement

$$C = \frac{1}{2\pi} \int F dk_x \, dk_y$$

Signature in Entanglement?
Not in Entanglement entropy
BUT in Entanglement Spectrum

Chern insulator and Entanglement

Obstruction to recovering atomic insulator

Diagnosing a topological phase with Entanglement Spectrum

Pollman, Turner, Berg, Oshikawa Turner, Zhang, Vishwanath Fan, Gilbert, Bernevig

- Topological phase protected by inversion symmetry.
- Physical Edge breaks inversion no edge state BUT entanglement spectrum secretly preserved inversion.
- Use Schmidt decomposition to come `back' to R. Antiunitary *Inv*

Filling Enforced Quantum Band Insulators

- Atomic limit of insulator electrons localized on atomic site.
- An example where the atomic picture is forbidden by the band filling itself.

Adrian Po (Berkeley)
Haruki Watanabe (Berkeley-> MIT)
Mike Zaletel(Station Q)
(to appear)

Crystal Lattices

Symmorphic Lattices
Point Group x Translation

non-Symmorphic Lattice has eg. glides (reflection+1/2 translation) At least 2 atoms in the unit cell

Example of a Filling Enforced Quantum Band Insulator

- Space Group -199 (non-symmorphic, cubic lattice)
- Minimum of 4 atomic sites in the unit cell BUT band structure with filling of 4 electrons. No atomic picture (incompatible with Time reversal and crystal symmetry - needs 2e per site).
- Requires spin-orbit coupling.
- Implies unremovable entanglement.

Entanglement Signature

- Choose entanglement cut that respects cubic symmetry cut in spin up/down space.
- Time reversal is a unitary particle hole symmetry.
- Entanglement spectrum gapless cannot be gapped without breaking symmetry. No `atomic' limit

Conclusions

 Entanglement provides a new way of thinking about quantum many body systems

How do we characterize short/long range entanglement?

 What are the different patterns of entanglement allowed starting from local Hamiltonians?...