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“Most expositions of the evolutionary process have focused 
on microevolutionary mechanisms. Millions of biology 
students have been taught the view (from population 
genetics) that ‘evolution is change in gene frequencies.’ Isn’t 
that an inspiring theme? This view forces the explanation 
towards mathematics and abstract descriptions of genes, and 
away from butterflies and zebras… The evolution of form is 
the main drama of life’s story, both as found in the fossil 
record and in the diversity of living species. So, let’s teach 
that story. Instead of ‘change in gene frequencies,’ let’s try 
‘evolution of form is change in development’.”



Myth. Microevolutionary theory based on gene-frequency change is incapable
of explaining the evolution of complex phenotypes.

Reality. Evolution reflects changes in genotype frequencies.

No principle of population genetics has been overturned by an 
observation in molecular, cellular, or developmental biology.

No novel “macroevolutionary” mechanism of evolution been revealed. 

Myth. Population genetics is uninspiring.

Reality. The goal of population genetics is not to be inspiring, but to provide
explanatory power. Population genetics grounds us in reality, whereas
verbal adaptive arguments easily lead us astray.

Myth. Evolution is a story-telling exercise.

Reality.    Evolutionary biologists are concerned with the mechanisms (population-
genetic processes) that result in change, not just in documenting history.



Myth. Identification of interspecific differences at the molecular and/or
cellular levels is tantamount to identifying the mechanisms of 
evolution.    

Reality. The resources deployed in evolutionary change reside at the
molecular level, and catalogs of interspecific differences
identify the end products of evolution, but not the processes
that promoted such change. 

The identification of causal population-genetic processes 
distinguishes evolutionary biology from comparative biology. 



Minimum requirements for a mechanistic understanding of evolution:

• The population-genetic environment – the relative power of the
population-genetic forces that promote the proliferation vs. eradication of
mutant alleles. 

• A non-adaptational null hypothesis.

• The intracellular environment – a deep understanding of molecular
and cellular biology; the natural history of various genetic elements and the
cellular functions and localizations of their encoded products.

• The external environment – changes driven by ecological challenges.



Expansion in Genome Complexity with the Evolution of Multicellularity: 
Cause or Effect?

Gene Number



The Expansion of Noncoding DNA with Genome Size 

10-3 10-2 10-1 100 101 102 103 104

M
eg

ab
as

es

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

Coding DNA

Genome Size (Megabases)
10-3 10-2 10-1 100 101 102 103 104

M
eg

ab
as

es

10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

100%

1%

10%

100%

1%

10%Intergenic DNA

10-3 10-2 10-1 100 101 102 103 104
10-5

10-4

10-3

10-2

10-1

100

101

102

103

104

Intron DNA

Land-plant nu

Animal nu

Unicellular nu

Prokaryote

Eukaryotic DNA virus

Bacteriophage

0.1%



mutation
random
genetic
drift

recombination

The Population-genetic Environment



Two Genetic Perils of Evolving Large Size

(Finlay 2002, Science)

Slope ≈ -1.0

Reduction in absolute
population size 
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• What is the mutation rate; how and why does it scale across phylogenetic groups?

• The enhanced power of genetic drift in eukaryotes, and multicellular
species in particular, encourages the emergence of aspects of gene
structure that magnify mutational target sizes to defective alleles. 

• Because the magnitude of selection operating on the mutation
rate is small, the mutation rate is bounded away from its
physiological minimum by the power of random genetic drift. 

• Like all traits, the mutation rate is subject to modification by
mutation pressure (in this case, on the repair apparatus). 



Advantage – essentially no selection bias; allows a genome-wide perspective of the
mutation profile.

Disadvantage – labor intensive; line / investigator loss. 

Mutation-accumulation (MA) experiment. Starting with a single stem mother, sublines are 
maintained by single-progeny descent, preventing selection from removing spontaneous 
mutations. This protocol is continued for hundreds of generations with dozens of lines.



N2 

MA59

MA35

Extreme Morphological Divergence in MA lines of C. elegans



• Clonal amplification of random single-stranded DNA fragments on luciferase / sulfurylase-
containing beads.

• Deposition of beads into a picotiter plate containing 250,000 wells. 

• Sequential addition of nucleotides and detection by chemiluminescence.

• Generates hundreds of millions of bps of sequence in a few days, without cloning. 

• Build contigs from the shot-gun sequences to a depth of 4 to 8x. 

• Analyze the data in a maximum-likelihood 
framework to remove error contributions.

Whole-genome Mutational Screening by 454 Life Sciences Technology
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• The average number of mutations per genome is roughly constant in noneukaryotic
microbes, in accordance with Drake.

• The mutation rate per nucleotide site increases with genome size in eukaryotes,
yielding a dramatic increase in the genome-wide mutation rate per generation.

Genome Size (Mb)
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The Lower Bound to the Mutation Rate in Cellular Life is Dictated by
the Power of Random Genetic Drift 

Genome Size (Mb)
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The Three Molecular Lines of Defense Against Mutation

1) Polymerase base-incorporation fidelity:
A

G

A
T

C

A
G

A
T

2) Polymerase proofreading:

3) Post-replicative mismatch repair:
A
G

A
T



Data are averages for studies performed in backgrounds deficient 
for post-replicative mismatch repair, and are drawn from studies
focused on base substitutions alone or a broad spectrum of effects.
The analyses are confined to the primary polymerases involved in 
chromosome replication.
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Microsatellite mutation rates in unicellular eukaryotes, C. elegans,
and mammals / land plants  scale 1 : 5 : 70 on a per-cell-division basis. 

Seyfert et al., 2008, Genetics
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The 

Transient Effects
of Induced Mutations

The induced selection coefficient on a mutator allele from linked and unlinked mutations 
≅ the excess genomic mutation rate to deleterious alleles 

x the average deleterious effect of a heterozygous mutation 
x 2 generations of association.

For multicellular species:

• the heterozygous effect of a 
deleterious mutation ≅ 0.01;

• the genomic mutation rate to deleterious
alleles ≅ 1.0;

• small modifications to the mutation rate
will be << 10-4;

• the selective disadvantage of a weak
mutator allele will often be < 10-6.

• Weak mutator alleles are subject to accumulation by random genetic drift.



Estimates of the ratio of the power of mutation (2u) to the 
power of random genetic drift (1/2N) obtained from standing 
population-level nucleotide heterozygosity at silent sites. 

4Nu

1/(2N)

2u

At equilibrium, average
allelic divergence at 
neutral sites =

ratio of the power of
mutation to the power
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The Per-generation Mutation Rate Increases With
the Power of Random Genetic Drift

Average Effective Population Size
(millions)

10-2 10-1 100 101 102 103

Ba
se

-s
ub

st
itu

tio
na

l M
ut

at
io

n 
R

at
e 

(x
 1

0-
9  

/ g
en

er
at

io
n)

1

10

Unicellular
  Eukaryotes

Prokaryotes

Invertebrates

Land plant

Mammals



Average Effective Population Size
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Myth. Natural selection promotes the evolution of organismal complexity.

Reality. There is no evidence at any level of biological organization that natural selection
encourages complexity. In contrast, substantial evidence exists that a reduction in the
efficiency of selection promotes the evolution of genomic complexity.



Myth. Natural selection promotes the evolution of organismal complexity.

Reality. Larger organisms with more complex morphologies have higher
historical extinction rates.

From: Stanley (1985).         
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• The selective disadvantage of a mutational hazard – alleles with increased
structural complexity involving n key nucleotide sites have elevated mutation
rates to defective alleles (nu),where u = mutation rate per nucleotide site. 

n ≈ 30 for introns

10 for transcription factor binding sites

4 for 5′ UTRs

?? nonfunctional DNA

The Mutational Cost of Genomic Embellishments



• About 8% of human deaths are caused by introns – exceeds the total from accidents and war. 

The Cost of an Intron – equivalent to adding 10 to 100 nucleotides to a gene. 

Results from large sequencing surveys
of defective alleles for monogenic
human genetic disorders.   
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• The power of random genetic drift – the effective number of gene copies per locus in a
species (N) dictates the efficiency of natural selection – the power of random drift ~1/N.      

The Passive Emergence of Gene Structural Complexity by Nonadaptive Mechanisms

• If nu << 1/N, a mutationally harmful embellishment can establish by drift.

If nu >> 1/N, emergence of the embellishment is inhibited by selection.

A key determinant in genomic evolution is the ratio of these opposing forces:

nu / (1/N) = Nu ⋅ n Estimated from molecular biology
Estimated from population surveys



The probability of fixation of a mutationally harmful gene-structural
embellishment declines with increasing population size.

Probability of intron fixation = 2s / (e4Ns – 1)
Probability of intron loss = 2s / (1 – e-4Ns)

s = nu = excess mutation rate to defective alleles

Effective Neutrality:

Probability = 1/(2N)  →

Nnu



Within-species Allelic Divergence at Silent Sites (2Ngu)
(twice the ratio of the power of mutation to the power of random genetic drift)
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5′ untranslated regions n ≈ 4

Threshold for colonization
occurs when 2Ngun = 1

(ratio of the power of mutation to the power of drift)     

• The population-genetic environment of multicellular species provides a setting that
is conducive to the evolution of gene features that magnify the mutation rate to 
defective alleles.

The Ancestral Eukaryote



Threshold Population Size for Intron Colonization

Threshold Nu ≈ 0.03         

Silent-site Variation (πs)
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Bootstrap tree of a locus showing two newly gained introns at nearly
identical sites.

Oregon population

Michigan population

Intron gain/loss in Daphnia pulex

• 23 cases of intron gain.

• Five cases of parallel gains at the same site.

• Three cases of intron loss.

• Most of the newly gained introns are in a set of
isolated Oregon populations that have been
through a prolonged population bottleneck.

Minnesota population

Li et al., 2009, Science



Intron-gain Alleles Are Weakly Deleterious

Li et al., 2009, Science



A Staggered Double-strand Break Model for Intron Origin

• 57% of the newly gained introns have short repeats.
• These short repeats are 5 to 22 bp long.
• Each intron gain has a unique repeat.

ATCATAGGATCATAGG

D. pulex +

D. pulex -

Outgroup -

cDNA

ACCCACA ACCCACA

D. pulex +

D. pulex -

Outgroup -
cDNA

Li et al., 2009, Science
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Duplicate engrailed
genes in zebrafish

Single copy
in tetrapods

Subfunctionalization of 
Modularized Duplicate Genes
Can Eliminate Pleiotropic
Constraints, Opening Up 
Novel Evolutionary Pathways



Subfunctionalization is a Common Fate of Duplicate Genes
in Animals and Land Plants  

Partitioned expression of HoXB1 duplicates in 
zebrafish embryo hindbrains recapitulates the 
expression pattern of the single gene in mouse 
embryos (McClintock et al. 2002)

Complementary loss of regulatory elements:

HoxB1a          HoxB1b

Coding-region modifications:

Duplicated b-catenin genes in C. elegans partition
cell -signalling and cell -adhesion functions carried
out by single gene in flies and vertebrates 
(Korswagen et al. 2000)

Loss of alternative splice sites:

Duplicated synapsin genes in Fugu adopted
alternative-splice site variants of single-copy
gene in tetrapods (Yu et al. 2003) 



The mutational-hazard hypothesis provides a potentially unifying 
explanation for numerous other, disconnected observations on 
genomic diversity:

• Entry into the DNA world.

• Gene number – preservation of duplicate genes by subfunctionalization.

• Degradation of sex chromosomes.

• Emergence of modular regulatory region
complexity and network architecture.

• Emergence of mRNA editing in land-plant
organelles.

• Restriction of sex chromosomes to multicellular
species.

• Differential proliferation of mobile genetic elements.



• The population-genetic environment of multicellular species provides
a setting that is conducive to the evolution of gene and genomic
features that are essentially unattainable in unicellular species.           

Genome Complexity and Organismal Complexity

• The nonadaptive forces that initially 
allowed the establishment of new and
reliable forms of genomic resources in
multicellular species provided the 
substrate for natural selection to grow 
organismal complexity in novel ways.  

C. Darwin, 1832



No statistical grounds for an association between multicellularity and eukaryotes
– oligocellularity has evolved many times in eukaryotes and prokaryotes.
– mega-multicellularity has evolved just twice (maybe three times).

Myxobacteria Merismopedia Anabaena        Planctomyces



Can the mutational-hazard theory be extended to understand the evolution of 
cellular features?

Some general questions:

1) Did the nuclear envelope evolve as a mechanism to isolate prespliced
mRNAs from the ribosome, or vice versa (the presence of a nuclear membrane
provided a physical barrier conducive to intron colonization)?

2) Did nonsense-mediated decay evolve as a means for dealing with 
erroneous transcripts?

3) What are the conditions that foster the origin and coordinated evolution of
complex heterodimeric molecules – intrinsic adaptive advantage or 
necessity promoted by the growing incapacities of individual proteins?

4) Does increased internal cell structure promote the evolution of complex
assemblages of proteins by providing an enriched environment for
concentrated protein-protein interactions (necessary for coevolution)?



Nothing in   biology   makes sense except
in the light of evolution.

Theodosius Dobzhansky, The American Biology Teacher, 1973

evolution
population genetics.
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The Indirect Consequences of Eukaryogenesis and Multicellularity
for Genome Evolution

Relatively low population sizes and recombination rates diminish the efficiency of
selection against mildly deleterious genomic modifications, leading to:

• A reduction in the efficiency of the DNA-replication machinery. 

• An accumulation of genomic and gene-structural changes that further magnify
the susceptibility of alleles to degenerative mutation.

• An enhanced vulnerability to somatic genetic disorders.



Base-substitution Mutation Rate
(x 10-8 / site / generation)
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Heritable Germline Rate ≅ 1.6 x 10-8

Mutation Rates in Somatic Tissues Are Up to 15x Those in the Germline 



LacI Reporter Construct
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Multicellularity indirectly imposes
selection pressure for a reduced
mutation rate.

Number of Key Fitness Loci x Number of Cell Divisions
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Although the absolute magnitude of somatic mutation increases with the level 
of multicellularity, the relative selective disadvantage of a mutator allele 
decreases above a critical number of cell divisions.

Number of Susceptible Fitness Loci x Number of Cell Divisions 
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• At least one to two deleterious mutations arise per human genome per generation. 

• The human imperative is to magnify the probability of survival and reproduction
regardless of the level of genetic affliction. 

• The average deleterious effect of such mutations is very mild, ~1 to 2.5% per event. 

• With a complete relaxation of selection, the decline in fitness per generation is
1 to 5% per generation, or 3 to 15% per century. 

• The rate of decline in human fitness is operating on a time scale comparable to  
global warming.  

The Paradox of Universal Health Care / Personalized Medicine


