Modeling the Thermal Evolution and Atmospheres of Low-Mass Low-Density Planets Jonathan Fortney Dept. of Astronomy & Astrophysics University of California, Santa Cruz Collaborators: Christroph Mordasini Eliza Kempton Kevin Zahnle Mark Marley Students: Caroline Morley Eric Lopez **KITP, February 24, 2015** • 1st part of the talk: 1st order composition information (fraction of planet's mass that is H/He) for low-mass low-density (LMLD) planets from thermal evolution modeling, plus the role of evaporative hydrodynamic mass loss • 2nd part of the talk: Towards 2nd order composition information from the spectra of the atmospheres of LMLD planets (looking for molecules), the problems that arise, and how to possibly circumvent them #### Low-Mass Low-Density Planets #### Low-Mass Low-Density Planets #### Thermal Evolution of LMLD Planets $$\int_{M_{\text{core}}}^{M_{\text{p}}} dm \frac{T dS}{dt} = -L_{\text{int}} + L_{\text{radio}} - c_{\text{v}} M_{\text{core}} \frac{dT_{\text{core}}}{dt}$$ № 1st order composition: what fraction of planet's mass is H/He envelope? № Relatively flat mass-radius relation suggests one can constrain mass fraction of H/He without mass measurements #### Radius as a Proxy for Composition Fressin et al. (2013) Lopez & Fortney (2014) #### Implementing Radius as a Proxy for Composition Wolfgang & Lopez (2014), Kepler planets within 0.15 AU ## A closely packed system of low-mass, low-density planets transiting Kepler-11 Jack J. Lissauer¹, Daniel C. Fabrycky², Eric B. Ford³, William J. Borucki¹, Francois Fressin⁴, Geoffrey W. Marcy⁵, Jerome A. Orosz⁶, Jason F. Rowe⁷, Guillermo Torres⁴, William F. Welsh⁶, Natalie M. Batalha⁸, Stephen T. Bryson¹, Lars A. Buchhave⁹, Douglas A. Caldwell⁷, Joshua A. Carter⁴, David Charbonneau⁴, Jessie L. Christiansen⁷, William D. Cochran¹⁰, Jean-Michel Desert⁴, Edward W. Dunham¹¹, Michael N. Fanelli¹², Jonathan J. Fortney², Thomas N. Gautier III¹³, John C. Geary⁴, Ronald L. Gilliland¹⁴, Michael R. Haas¹, Jennifer R. Hall¹⁵, Matthew J. Holman⁴, David G. Koch¹, David W. Latham⁴, Eric Lopez², Sean McCauliff¹⁵, Neil Miller², Robert C. Morehead³, Elisa V. Quintana⁷, Darin Ragozzine⁴, Dimitar Sasselov⁴, Donald R. Short⁶ & Jason H. Steffen¹⁶ Table 1 | Planet properties | Planet | Period
(days) | Epoch
(BJD) | Semi-major axis
(AU) | Inclination
(°) | Transit duration
(h) | Transit depth
(millimagnitude) | Radius (R_{\oplus}) | Mass (M_{\oplus}) | Density
(g cm ⁻³) | |--------|-------------------------|-----------------------------|-------------------------|--------------------------------------|-------------------------|-----------------------------------|-----------------------|----------------------|----------------------------------| | b | 10.30375 ± 0.00016 | $2,454,971.5052 \pm 0.0077$ | 0.091 ± 0.003 | 88.5 ^{+1.0} _{-0.6} | 4.02 ± 0.08 | 0.31 ± 0.01 | 1.97 ± 0.19 | 4.3 + 2.2 | $3.1^{+2.1}_{-1.5}$ | | С | 13.02502 ± 0.00008 | 2,454,971.1748 ± 0.0031 | 0.106 ± 0.004 | 89.0+1.0 | 4.62 ± 0.04 | 0.82 ± 0.01 | 3.15 ± 0.30 | $13.5^{+4.8}_{-6.1}$ | 2.3+1.3 | | d | 22.68719 ± 0.00021 | $2,454,981.4550 \pm 0.0044$ | 0.159 ± 0.005 | 89.3+0.6 | 5.58 ± 0.06 | 0.80 ± 0.02 | 3.43 ± 0.32 | $6.1^{+3.1}_{-1.7}$ | $0.9^{+0.5}_{-0.3}$ | | е | 31.99590 ± 0.00028 | $2,454,987.1590 \pm 0.0037$ | 0.194 ± 0.007 | 88.8+0.2 | 4.33 ± 0.07 | 1.40 ± 0.02 | 4.52 ± 0.43 | 8.4+2.5 | $0.5^{+0.2}_{-0.2}$ | | f | 46.68876 ± 0.00074 | $2,454,964.6487 \pm 0.0059$ | 0.250 ± 0.009 | 89.4+0.3 | 6.54 ± 0.14 | 0.55 ± 0.02 | 2.61 ± 0.25 | 2.3+2.2 | $0.7^{+0.7}_{-0.4}$ | | g | 118.37774 ± 0.00112 | $2,455,120.2901 \pm 0.0022$ | 0.462 ± 0.016 | 89.8+0.2 | 9.60 ± 0.13 | 1.15 ± 0.03 | 3.66 ± 0.35 | <300 | -0.4 | #### Sculpted by Atmospheric Mass Loss $$\dot{M}_{\mathrm{e-lim}} pprox \frac{\epsilon \pi F_{\mathrm{XUV}} R_{\mathrm{XUV}}^3}{G M_{\mathrm{p}} K_{\mathrm{tide}}}$$ Lopez, Fortney, & Miller (2012) #### Sculpted by Atmospheric Mass Loss - Simple modeling framework reproduces observations - Large XUV fluxes at young ages and large radii leads to most mass loss within first 100 Myr - We are likely seeing a remnant population #### Sculpted by Atmospheric Mass Loss Updated from Lopez & Fortney (2014), courtesy Eric Lopez #### Thermal Evolution of LMLD Planets with Mass Loss - Thermal evolution with mass loss due to UV-driven evaporation - Can transform the very nature of planets #### LMLD Evolution Findings - LMLD planets can undergo significant radius evolution over time, in particular at young ages. This, plus high XUV fluxes lead to mass loss - Evidence for mass loss, reproduced by a simple couple evolution + mass loss model, looks very strong - At Gyr+ ages, radius is mostly insensitive to mass, which can be exploited to constrain H/He mass fraction for a large number of planets (See Wolfgang & Lopez, 2015) - Offshoot of this work (Luger et al. 2015): Transformation of 1-2 M_{Earth} LMLD planets into evaporated cores in M dwarf habitable zones #### Atmospheres - Apparently huge numbers of these relatively close-in planets have H-dominated envelopes of ~1-10% (or more) in mass - These envelopes provide visible atmospheres that provide us significant opportunity to learn about about the planets - These atmospheres are remnants of volatile materials accreted for the nebula, + an outgassed component (?) Kreidberg et al. (2014a) Breakdown of CH₄ by stellar UV leads to haze formation on Jupiter, Saturn, Uranus, Neptune, and Titan Models for planet GJ 1214b #### Towards Better Characterization of Exoplanet Composition - This is hard - Compared to solar system scientists, exoplanetary astronomers are not a patient people - If transmission spectra are mostly flat (Heather Knutson's talk), well, then what else can we do? - We're looking to other viewing geometries besides transmission - Thermal Emission - Reflection ## GJ 1214b as an example: Thick high-altitude soot haze from photochemistry can flatten transmission spectrum What do truly flat transmission spectra look like at other viewing geometries? (preliminary results: Morley & Fortney, in prep) ### The Conundrum of 2015: How do we best characterize extremely cloudy atmospheres? $$\frac{ au_{ m H}}{ au_{ m V}} = \sqrt{\frac{2\pi a}{H}} \, { m Ratio \ is ~25} \ { m for \ GJ \ 1214b}$$ - Transmission spectroscopy samples relatively long path lengths, making clouds more important (Fortney, 2005) - Thermal emission <u>may</u> be more favorable, due to optically thinner clouds - Planets are relatively "cool" so best bet is probably thermal emission with JWST in the mid IR, where planets are brighter and clouds less opaque Like our 4 solar system giant planets, and Titan, high-altitude photochemical hazes drive temperature inversions. CO dominates high in atmosphere (preliminary results) ## High-altitude hazes cause a **temperature inversion** which creates **emission features**. (preliminary results: Morley & Fortney, in prep) #### Soots and salts/sulfides create different reflection spectra ## Thinking more about composition: 5000 Planets from "Population Synthesis" - Models from Mordasini et al. (2012a,b) - Low mass planets from 5-15 M_{earth} may have quite high Z_{env} #### Very Metal-Rich Atmospheres May be the Rule - A wide diversity in metal enrichments? - High Z_{env} making <u>abundant material for clouds</u>? #### Very Metal-Rich Atmospheres May be the Rule - A wide diversity in metal enrichments? - High Z_{env} making <u>abundant material for clouds</u>? #### Conclusions I - We can model the thermal evolution of LMLD planets within a simple model that probably captures most behavior - Models should be tied to mass-loss models to understanding current (and past) composition - We can get 1st order composition information: The fraction of the planet's mass that is H/He envelope - Remnant cores can tell us about the composition of the material below H/He envelopes - Planets are cool, which leads to condensation, and clouds - We're trying to think about ways to better characterize the atmospheres of LMLD planets, in thermal emission and reflection, for 2nd order composition information - Thermal emission appears promising - I'm sorry but it might take some patience #### Conclusions II - In my opinion we need to think a lot more about what we'd learn, and what it would mean, when we can measure atmospheric abundances - Accreted atmospheres - What solids do you accrete as a function of orbital separation? What solids do you accrete in multiplanet vs. single systems? (Does the pot get stirred?) - Mostly rocky, mostly icy? - Caron-rich or poor? - •How important is outgassing for mostly rocky planets with Hdominated atmospheres?