Formation of Close-in Super-Earths and Mini-

 Neptunes

Hilke E. Schlichting

MIT

KITP Lunch Seminar
Feb 3 th 2015

Collaborators:
Niraj Inamdar (PhD Student, MIT), Peter Goldreich (Caltech)

From Gas \& Dust to Planets

planetesimals protoplanets

$$
u, \sigma
$$

$$
v, \Sigma
$$

1. Planetesimal formation:
2. Runaway growth:

$$
\frac{1}{R_{1}} \frac{d R_{1}}{d t} \propto R_{1}
$$

For $\mathrm{v}_{\text {esc }}>\mathrm{u}$ gravitational focusing enhances the accretion rate

$$
\frac{1}{R} \frac{d R}{d t} \sim \frac{\sigma \Omega}{\rho R}\left(\frac{v_{\text {esc }}}{u}\right)^{2} \longrightarrow \mathrm{t}_{\text {grow }} \sim 10^{7} \text { years }
$$

3. Oligarchic growth \& Isolation:

$$
M_{\mathrm{iso}} \approx 2 \pi a\left(\Delta a_{\text {zone }}\right) \Sigma \sim M_{\text {Neptune }}
$$

Last Stages of Terrestrial Planet Formation

Giant Impacts:

Protoplanets' velocity dispersion increases
\longrightarrow Giant Impacts

$$
\mathrm{t}_{\text {Giant-Impacts }} \sim 10^{8} \text { years }(1 \mathrm{AU})
$$

Clean up:

- Orbits planar \& circular
- Accretion \& ejection of remaining planetesimals

Kepler Mission

3538 Planetary Candidates

1218 Planets in
Multi-Planet Systems

Medium Radius $=2.3$
$\mathrm{R}_{\text {Earth }}$
Medium Period = 9 days
All planetary candidates discovered by Kepler as of Nov. $5^{\text {th }} 2013$.

Part I

Materials \& Supplies

Minimum Disk Masses Required

$\Delta a \sim 2 v_{H} / \Omega$

$$
\left\{\begin{array}{cccc}
\bullet & \bullet & \bullet & 0 \\
-0 & -0 & \rightarrow \\
\bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

Viscous Stirring

Viscous stirring tends to increase the random kinetic energy all all bodies in the disk

$$
\text { For } \mathrm{v} \ll \mathrm{v}_{\text {esc }} \quad \sigma_{\text {sitr }} \gg \sigma_{\text {coll }}
$$

For $\mathrm{v} \gg \mathrm{v}_{\text {esc }} \quad \sigma_{\text {stirr }} \ll \sigma_{\text {coll }}$

$\sigma_{\text {stirr }} \sim \pi R^{2}\left(\frac{v}{v_{\text {esc }}}\right)^{-4}$

$\sigma_{\text {coll }} \sim \pi R^{2}\left(1+\left(\frac{v}{v_{\text {esc }}}\right)^{-2}\right)$

Minimum Disk Masses Required

Minimum Disk Masses Required

$$
M_{\max } \simeq \frac{\left[2^{5 / 2} \pi a^{2} \Sigma\left(\rho / \rho_{\odot}\right)^{1 / 6}\left(a / R_{\odot}\right)^{1 / 2}\right]^{3 / 2}}{M_{\odot}^{1 / 2}}
$$

Take Home Points I

Formation of close in planets as isolation masses unlikely, need very massive inner disks and $\Sigma_{\text {gas }} / \Sigma_{\text {dust }}<10$ for stability.

Formation of close in planets with Giant Impacts is a possibility, need massive inner disks, typically few tens MMSN.

MMSN type disks fully consistent with formation further out and subsequent inward migration and/or radial inward drift of solids and subsequent local assembly.

Part II

Composition \& Structure

Exoplanet Atmospheres

For comparison, the Earth's atmosphere contains less than 10^{-6} of its mass and has an atmospheric scale height that is only $\sim 0.1 \%$ of its radius.

Atmospheres of Isolation Masses

Envelope Accretion After Giant Impacts

Symbols from Lopez \& Fortney (2013)
(Lee, Chiang \& Ormel 2014)

Radial Drift!

Take Home Points II

Formation of close in planets as isolation masses challening, need very massive inner disks and $\Sigma_{\text {gas }} / \Sigma_{\text {dust }}<10$ for stability and to prevent run-away gas accretion (Lee et al. 2014).

Formation of close in planets with Giant Impacts is a possibility for atmospheres of few \% and less if:

1) $L_{\text {acc }}=0$, 2) have massive inner disks, typically few tens MMSN and 3) $\Sigma_{\text {gas }} / \Sigma_{\text {dust }}<10$ to prevent radial drift.

Formation models of close in planets need to account for radial drift of solids and/or migration.

