Formation of Close-in Super-Earths and Mini-Neptunes

Hilke E. Schlichting

MIT

KITP Lunch Seminar Feb 3th 2015

Collaborators: Niraj Inamdar (PhD Student, MIT), Peter Goldreich (Caltech)

From Gas & Dust to Planets

1. Planetesimal formation:

2. Runaway growth:

$$\frac{1}{R_1}\frac{dR_1}{dt} \propto R_1$$

For v_{esc} > u gravitational focusing enhances the accretion rate

$$\frac{1}{R}\frac{dR}{dt} \sim \frac{\partial\Omega}{\rho R} \left(\frac{v_{\rm esc}}{u}\right)^2 \longrightarrow t_{\rm grow} \sim 10^7 \text{ years}$$

3. Oligarchic growth & Isolation:

$$M_{\rm iso} \approx 2\pi a (\Delta a_{\rm zone}) \Sigma \sim M_{\rm Neptune}$$

planetesimals protoplanets

<u>Last Stages of Terrestrial Planet</u> <u>Formation</u>

Giant Impacts:

Protoplanets' velocity dispersion increases

Giant Impacts

 $t_{Giant-Impacts} \sim 10^8$ years (1AU)

Clean up:

- Orbits planar & circular
- Accretion & ejection of remaining planetesimals

3538 PlanetaryCandidates1218 Planets in

Multi-Planet Systems

Medium Radius = 2.3 R_{Earth} Medium Period = 9 days

All planetary candidates discovered by Kepler as of Nov. 5th 2013.

Part I

Materials & Supplies

Minimum Disk Masses Required

 $\Delta a \sim 2 v_H / \Omega$

Viscous Stirring

Viscous stirring tends to increase the random kinetic energy all all bodies in the disk

Minimum Disk Masses Required

Minimum Disk Masses Required

Take Home Points I

Formation of close in planets as isolation masses unlikely, need very massive inner disks and $\Sigma_{gas}/\Sigma_{dust}$ <10 for stability.

Formation of close in planets with Giant Impacts is a possibility, need massive inner disks, typically few tens MMSN.

MMSN type disks fully consistent with formation further out and subsequent inward migration and/or radial inward drift of solids and subsequent local assembly.

Part II

Composition & Structure

Exoplanet Atmospheres

For comparison, the Earth's atmosphere contains less than 10^{-6} of its mass and has an atmospheric scale height that is only ~ 0.1% of its radius.

Atmospheres of Isolation Masses

Envelope Accretion After Giant Impacts

(Inamdar & Schlichting, 2015)

Radial Drift!

Take Home Points II

Formation of close in planets as isolation masses challening, need very massive inner disks and $\Sigma_{gas}/\Sigma_{dust}$ <10 for stability and to prevent run-away gas accretion (Lee et al. 2014).

Formation of close in planets with Giant Impacts is a possibility for atmospheres of few % and less if:
1) L_{acc}=0, 2) have massive inner disks, typically few tens MMSN and 3) Σ_{gas}/Σ_{dust} <10 to prevent radial drift.

Formation models of close in planets need to account for radial drift of solids and/or migration.