

Transport properties of iron mixtures at planetary conditions

<u>Dario ALFÈ¹</u>
Monica Pozzo¹, Chris Davies², David Gubbins²

¹Department of Earth Sciences & Department of Physics and Astronomy,

Thomas Young Centre@UCL & London Centre for Nanotechnology

University College London

²University of Leeds and University of California San Diego

Transport in the Earth's core

- Thermal conductivity (heath transport)
- Electrical conductivity (Ohmic dissipation)

Computer modelling

How do the atoms interact with each other?

Density Functional theory Hohenberg & Kohn 1964 Kohn & Sham 1965

$$H\psi = E\psi$$

$$\psi(r_1, \dots r_N)$$

$$\downarrow$$

$$n(r)$$

$$H_{KS}\psi_{i} = E_{i}\psi_{i} \quad i = 1, N$$

$$H_{KS} = T + V + V_{H} + V_{XC}$$

Electrical conductivity

- Density functional theory
- Kubo-Greenwood:

$$\begin{split} \sigma_{\mathbf{k}}(\omega,R_{I}) &= \frac{2\pi e^{2}\hbar^{2}}{3m^{2}V_{\mathrm{cell}}} \frac{1}{\omega} \sum_{\alpha=1}^{3} \sum_{i,j=1}^{N} \left(f_{i,\mathbf{k}} - f_{j,\mathbf{k}} \right) \left| \left\langle \psi_{i,\mathbf{k}} \middle| \nabla_{\alpha} \middle| \psi_{j,\mathbf{k}} \right\rangle \right|^{2} \delta \left(\varepsilon_{i,\mathbf{k}} - \varepsilon_{j,\mathbf{k}} - \hbar \omega \right) \\ \sigma(\omega) &= \left\langle \sigma(\omega,R_{I}) \right\rangle \\ \sigma &= \lim_{\omega \to 0} \sigma(\omega) \end{split}$$

Thermal conductivity

Electronic component:

$$k = \lim_{\omega \to 0} \left\langle k(\omega, R_I) \right\rangle = \lim_{\omega \to 0} \left\langle \frac{1}{e^2 T} \left(L_{22}(\omega, R_I) - \frac{L_{12}^2(\omega, R_I)}{\sigma(\omega, R_I)} \right) \right\rangle$$

$$L_{l,m}(\omega, R_I) = (-1)^{l+m} \frac{2\pi e^2 \hbar^2}{3m^2 V_{\text{cell}}} \frac{1}{\omega} \sum_{\alpha=1}^{3} \sum_{i,j=1}^{N} \left(f_{i,\mathbf{k}} - f_{j,\mathbf{k}} \right) \left| \left\langle \psi_{i,\mathbf{k}} \middle| \nabla_{\alpha} \middle| \psi_{j,\mathbf{k}} \right\rangle \right|^2 \delta \left(\varepsilon_{i,\mathbf{k}} - \varepsilon_{j,\mathbf{k}} - \hbar \omega \right) \left(\varepsilon_{i,\mathbf{k}} - \mu \right)^{l-1} \left(\varepsilon_{j,\mathbf{k}} - \mu \right)^{m-1}$$

Ionic component (Green-Kubo):

$$\kappa = \frac{1}{3V_{cell}k_BT^2} \int_0^\infty \langle \mathbf{j}(0)\mathbf{j}(t) \rangle dt$$

Example: liquid Na at p=0 and T=400 K

Conductivities of liquid Na at p=0 and T=400K

	$\sigma_0 (10^6 \Omega^{-1} \text{m}^{-1})$	κ ₀ (W m ⁻¹ K ⁻¹)	L (10 ⁻⁸ Ω W K ⁻²)
PBE	10.3	93	2.26
EXP	9.7	86	2.22

Lorenz number $L = k_0/\sigma_0 T$

Resistivity of iron at p=0

R. J. Weiss and A. S. Marotta, J. Phys. Chem. Solids 9, 302 (1959).

Resistivity of iron at p=0 and T= 500 K from DFT-PW91

D. Alfè, M. Pozzo, and M.J. Desjarlais, Physical Review B 85, 024102 (2012)

Conductivity of the Earth's core

- Melting temperature of Fe at ICB pressure.
- Isentropic temperature profile in the outer core.
- Composition of the core
 - Effect of light impurities on melting temperature
 - Effect of light impurities on conductivities

Melting:

- Free Energy:
 - Helmholtz free energy: F(V,T) = E(V,T) TS(V,T)
 - Gibbs free energy: G(p,T) = F(V,T) + pVp = -dF/dV

*UCL

Hugoniot of Fe

$$\frac{1}{2}p_H(V_0 - V_H) = E_H - E_0$$

The melting curve of Fe

Alfè et al 1999, 2001, 2002, 2009; Belonoshko et al 2000; Laio et al 2000; Boehler 1993; Jephcoat 1996; Williams et al. 1986; Ma et al 2004; Shen et al. 1998; Brown & McQueen 1986; Yoo et al 1993; Nguyen&Holmes 2004; Jackson et al. 2013; Anzellini et al 2013; Bouchet et al. 2013.

Core composition

 Birch (1952) - "The Core is iron alloyed with a small fraction of lighter elements"

- Nature of light element inferred from:
 - Cosmochemistry
 - Meteoritics
 - Equations of state

Strategy to constrain the composition of the Earth's core

- Density change at ICB ~ 5-6.5 % (seismological data).
- Density change on melting for Fe ~ 1.7 % (from abinitio calculations).
- Partition of light elements.

Solid-liquid equilibrium

- Binary mixture, solvent A, solute X
- Equality of chemical potentials

$$\mu_{X}^{l}(p,T_{m},c_{X}^{l}) = \mu_{X}^{s}(p,T_{m},c_{X}^{s})$$

$$\mu_{X}(p,T_{m},c_{X}) = k_{B}T \ln c_{X} + \tilde{\mu}_{X}(p,T_{m},c_{X})$$

$$c_X^s/c_X^l = \exp\left[(\tilde{\boldsymbol{\mu}}_X^l - \tilde{\boldsymbol{\mu}}_X^s)/k_B T_m\right]$$

Calculating μ^{0l}_{XA} (liquid)

$$F_{A/X} - F_A = \int_0^1 d\lambda \left\langle U_{A/X} - U_A \right\rangle_{\lambda}$$

$$U_{\lambda} = (1 - \lambda)U_{A} + \lambda U_{A/X}$$

$$\mathbf{f}_{\lambda} = -\frac{\partial U_{\lambda}}{\partial \mathbf{R}} = (1 - \lambda)\mathbf{f}_{A} + \lambda\mathbf{f}_{A/X}$$

"Alchemy"

Results

$$c_X^s / c_X^l =$$

$$= \exp \left[(\tilde{\boldsymbol{\mu}}_X^l - \tilde{\boldsymbol{\mu}}_X^s) / k_B T \right]$$

Composition of the Earth's core

	Solid	Liquid
S/Si	8.5 ± 2.5%	10 ± 2.5 %
0	0.2 ± 0.1 %	8-13 ± 2.5 %

$$T - T_0 \simeq \frac{k_B T}{S_0^l - S_0^s} (c_X^s - c_X^l) \simeq -700, -900 \text{ K}$$

Earth's outer core temperatures

Iron and iron alloys at Earth's core conditions

Zhang et al, Nature 2015

M. Pozzo, C. Davies, D. Gubbins, & D. Alfè, Nature **485**, 355 (2012); PRB **87**, 014110 (2013); EPSL **393**, 169 (2014). News & Views by B. Buffet, Nature **485**, 319 (2012).

See also N. de Koker et al, PNAS 109, 4070 (2012); Gomi et al, PEPI 224, 88 (2013). Ohta et al, AGU abstract (2014).

Conclusions

- Conductivities of the Earth's core are 2-3 times higher than previous estimates.
- Power for the geodynamo is greatly reduced (but longer magnetic decay time, which stabilises the magnetic field).
- Young inner core, rapid secular cooling and/or radiogenic heating.
- The top of the core may be thermally stratified

B. Buffet, Nature 485, 319 (2012).