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Dissipation can be graduated 
along the viscous line, the 
magnetic diffusion line, and 
the Rossby line for 
dissipation in the Ekman 
layer. 
It places strong constraints 
on the acceptable regimes.  
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Rossby : propagation time of l-size 
Rossby waves 
Alfvén : propagation time of Alfvén 
waves (large-scale B) 
u : l-size eddy turnover time 
b : time of l-size Alfvén waves 
	  
QG	  = Quasi-Geostrophic 
SQG	  = Semi-Quasi-Geostrophic 
 
Values used to draw the figures: 
ν ~ 10-6 m2/s 
η ~ 1 m2/s 
tSV ~ 300 years 
B ~ 3 mT 

      τ-‐l	  regime	  diagrams	  
assump.ons	  
	  

•  Time-scales τ and length-
scales l are related by various 
physical processes 
•  Regime changes occur when 
τ(l) lines intersect 
•  Dimensionless numbers can 
we written as time-scale ratios 
•  The scale l at which a 
dimensionless number is ~1 is 
more important than the value 
of that number at the integral 
scale 
•  Turbulent dynamics is 
controlled by the shortest time-
scale process 

2	   	  	  	  Conclusions	  
	  

•  Rotation plays an important 
role in limiting the dissipation 
of the dynamo. 
•  This might explain the 
absence of a magnetic field on 
Venus. 
•  Dissipation occurs on 
relatively large length-scales 
in the Earth’s core. Magnetic 
dissipation dominates. 
•  3D Alfvén waves can 
propagate at short scales, but 
turbulent cascades are always 
under the influence of rotation. 
•  The new tool we introduced 
(τ-l regime diagrams) can be 
useful in other complex 
turbulent systems. 

5	  

	  	  	  	  	  	  	  	  Introduc.on	  
	  

•  Turbulence involves a range 
of scales. 
•  We only know the large scales 
of flow and magnetic field in 
the Earth’s core. 
•  Numerical simulations of the 
geodynamo provide scaling 
laws for large-scale quantities 
but cannot resolve the complete 
range of scales. 
•  Here, we explore plausible 
turbulent regimes in planetary 
cores, using the known 
properties of the fluid 
(viscosity, magnetic 
diffusivity), the rate of rotation, 
and the presence or absence of 
a magnetic field. 
	  

1	   4	  
Results	  and	  key	  issues	  
	  

•  When both rotation and a 
strong magnetic field are 
present, the dynamo operates 
in a quasi-geostrophic regime. 
•  Growth time of Taylor 
columns ~	  z/Ωl	  à implies 
large region of semi-
quasigeostrophic regime 
•  Equipartition of magnetic 
and kinetic energies in MHD 
turbulence à would lead to 
too much dissipation 
•  Inhibition of turbulence 
when both rotation and 
magnetic field are present 
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Note that an energy density 
spectrum  E(k) ~ k-n translates 
into a τ(l) ~ l 3/2-n/2 law. 
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