Challenges and Perspectives from (TD) Density Functional Theory: From Low-Dimensional Structures to Real Materials

Angel Rubio

NanoBio Spectroscopy Group and ETSF Scientific Development Centre Dpto. Física de Materiales, Universidad del País Vasco, Centro Física de Materiales CSIC-UPV/EHU San Sebastián, Spain and FHI Max-Planck-Gesellschaft, Berlin, Germany

http://nano-bio.ehu.es E-mail: angel.rubio@.ehu.es

The Conference covers DFT/TDDFT, Quantum Chemistry, Quantum Monte Carlo, Many-body Perturbation Theory, Dynamical Mean-Field Theory, etc

Review talks:

- Lucia Reining Many-Body Perturbation Theory:
- Silke Biermann Dynamical Mean Field Theory
- **Roberto Car** Electron Transport at the Molecular Scale:
- Matthew Foulkes Quantum Monte Carlo Methods:

OUTLINE

Introduction:

DFT: some (bias non exhaustive) open problems

- * long range potential
- * dispersion forces: vdW, etc.
- * band-gap problem: local, vs non-local potentials Hybrids.....

Excitations: TDDFT Application to finite systems: Linear Response applications : "small clusters, phenolates and porphyrines"

Spectroscopy of Solids: Problems with standard XC functionals: link to DFT polarisation theory Applications to 1D: Linear chains and polymer

DFT Success "~chemical accuracy"

Structural properties, stability, phonons Phase transitions Surface catalysis and chemical reactivity Biomodeling

Allows large scale simulations BUT.....

.....present XC-functionals usually fail in describing:

LEVEL ALIGNMENT (KS): DFT-Gap Long-range potential (atom/molecule) **Dispersion forces VdW, Solvation Charge-transfer, multiple excitations Memory effects; Dissipation; lifetime; de-coherence Open shell systems and Open quantum systems** Correlated Materials

LEVEL ALIGNMENT, **Dispersion forces VdW**

Supramolecular chemistry

Biophysics..

Molecular Transport

top view

Euskal Herriko

Unibertsitatea

Universidad

del País Vasco

side view

See the talk of P. Rinke for CO on surfaces Challenges and Perspectives from (TD) Density Functional Theory KITP, Santa Barbara, 2nd November 2009

N. Atodiresei, S.Blugel et al, PRL **102**, 136809 (2009)

European Theoretica Spectroscopy Facility

Illustrative Example: physisorbed benzene

LDA gaps are independent of substrate and distance Same result with other functionals (GGA, hybrid or exact exchange) GW gaps show large variation across different surfaces GW gap sensitive to atomistic details <u>screening is very important</u>

LONG-RANGED (vdW)

Weak but ubiquitous - additional to covalent, ionic bonds

Basic physics: long-range correlation "fluctuation dipoles"

A correlation effect, highly nonlocal so LDA & GGA FAIL

Adiabatic connection dissipation formalism (ACDFT)

$$E_{C}[n] = -\frac{1}{2} \int_{0}^{1} d\lambda \int dr_{1} dr_{2} \frac{1}{r_{12}} \left[\frac{1}{\pi} \int_{0}^{+\infty} d\omega \left[\chi_{\lambda} \left(r_{1}, r_{2}; i\omega \right) - \chi_{KS} \left(r_{1}, r_{2}; i\omega \right) \right] \right]$$

System	Present	Standard
1D metals ^a	$-D^{-2}(\ln(KD))^{-3/2}$	$-D^{-5}$
1D insulators [9]	$-D^{-5}$	$-D^{-5}$
2D metals [10,11]	$-{ m D}^{-5/2}$	$-D^{-4}$
π -conjugated layers ^a	$-D^{-3}$	$-D^{-4}$
1 metallic, 1 π layer ^a	$-D^{-3}\ln(D/D_0)$	$-D^{-4}$
2D insulators [6]	$-D^{-4}$	$-D^{-4}$
Thick metals or ins. [11]	$-D^{-2}$	$-D^{-2}$

J. Dobson, A. White, AR PRL (2006);

Band-gap of Solids: not the difference of KS eigenvalues?

J.P. Perdew, M. Levy PRL 51, 1884 (1983); L.J. Sham, M. Schlüter PRL 51, 1888 (1983)

$$E_{\rm gap} = \varepsilon_{\rm gap}^{\rm KS} + \Delta_{\rm xc}$$

$$\Delta_{\rm xc} = v_{\rm xc}^+ - v_{\rm xc}^-$$

• How large is
$$\Delta_{\rm xc}$$
?

Problems of the EXX for wide-band-gap insulators Improved with new hybrid functionals

- Role of correlation?
 - ▷ LDA/GGA correlation not good
 - \triangleright LDAx: part of correlation effects

Challenges and Perspectives from (TD) Density Functional Theory KITP, Santa Barbara, 2nd November 2009

European

Spectroscopy Facilit

Accurate potentials can be obtained from MBPT expressions

Estimate of the derivative discontinuity 30 to 50% comes from EXX+RPA EXX only overestimates the gap (HF)

$$\Delta_{\rm xc} = E_{\rm gap} - E_{\rm gap}^{\rm KS} = \langle c | \Sigma_{\rm xc}(\varepsilon_c) - v_{\rm xc} | c \rangle - \langle v | \Sigma_{\rm xc}(\varepsilon_v) - v_{\rm xc} | v \rangle$$

Grüning, Marini & Rubio JCP (2006); PRB(2007)

Approximate the xc-non-local potential in terms of a real-GW selfenergy

What is the best Vxc that reproduces the quasiparticle spectra?

Schilfgaarde, Kotani, and Faleev, PRL 96, 226402 (2006)

However, none of the mixing scheme gives good results for both sem iconductors and insulators

$$\begin{split} E_{\mathsf{X}\mathsf{C}} &= E_{\mathsf{X}\mathsf{C}}^{\mathsf{den},\gamma}[n] + E_{\mathsf{X}\mathsf{C}}^{\mathsf{orb},\gamma}[\{\psi_i\}]\\ E_{\mathsf{X}\mathsf{C}}^{\mathsf{orb},\gamma} &= -\frac{1}{4}\int d\mathbf{r}\int d\mathbf{r}' n(\mathbf{r}',\mathbf{r})w^{\gamma}(\mathbf{r},\mathbf{r}')n(\mathbf{r},\mathbf{r}'), \end{split}$$

$$w^{\gamma}(\mathbf{r},\mathbf{r}') = \int d\mathbf{r}'' \frac{(\epsilon^{\gamma})^{-1}(\mathbf{r},\mathbf{r}'')}{|\mathbf{r}''-\mathbf{r}'|}.$$

1/4 HF:
$$(\epsilon^{\gamma})^{-1}(\mathbf{r}, \mathbf{r}'') = \delta(\mathbf{r}' - \mathbf{r}'')\gamma$$

SR HF: $(\epsilon^{\gamma})^{-1}(\mathbf{r}, \mathbf{r}'') = \delta(\mathbf{r}' - \mathbf{r}'')e^{-\gamma(\mathbf{r} - \mathbf{r}'')}$
R HF: $(\epsilon^{\gamma})^{-1}(\mathbf{r}, \mathbf{r}'') = \delta(\mathbf{r}' - \mathbf{r}'')(1 - e^{-\gamma(\mathbf{r} - \mathbf{r}'')})$

The mixing that is good for the Gap is not for optical spectra

The non-local potential corrects the gap (not exact) however screening is difficult to model properly

Density Functional versus Many-body perturbation theory (challenge)

EXACT ALTERNATIVE: (Runge and Gross 1984): Time Dependent Density Functional Theory

All observables are functionals of the TD density

One-to-one correspondence between the time-dependent density and the external potential, $v(r,t) < ----> \rho(r,t)$

Time-Dependent Density Functional Theory, Lecture Notes in Physics, Vol. 706 (Springer, Berlin, 2006)

Linear Response

v = Coulomb potential, related to local field effects $f_{xc} =$ quantum exchange-correlation effects

$$V_{induced} = \delta n v + f_{xc} \delta n$$

Hartree

Linear Response

$$\chi(\omega) = \chi_0(\omega) + \chi_0(\omega)(v + f_{xc}(\omega))\chi(\omega)$$

Lehmann representation of the density response function:

$$\chi(\mathbf{r},\mathbf{r}',\omega) = \lim_{\eta \to 0^+} \sum_{m} \left[\frac{\langle 0 | \hat{n}(\mathbf{r}) | m \rangle \langle m | \hat{n}(\mathbf{r}') | 0 \rangle}{\omega - (E_m - E_0) + \mathrm{i}\eta} - \frac{\langle 0 | \hat{n}(\mathbf{r}') | m \rangle \langle m | \hat{n}(\mathbf{r}) | 0 \rangle}{\omega + (E_m - E_0) + \mathrm{i}\eta} \right]$$

 χ (for a finite system) has poles at the excitation energies, $\Omega = E_m - E_0$, while χ_{KS} has poles at the KS eigenvalue differences, $\omega_{jk} = \epsilon_j - \epsilon_k$.

$$\chi_0(r,r',w) = \sum_{ij} (f_j - f_i) \frac{\psi_i^c(r)\psi_j(r)\psi_i(r')\psi_j^c(r')}{\epsilon_i - \epsilon_j - w}$$

How to solve the linear response equations

(1) Sum over states: $\chi_0(r,r',w) = \sum_{ij} (f_j - f_i) \frac{\psi_i^c(r)\psi_j(r)\psi_i(r')\psi_j^c(r')}{\epsilon_i - \epsilon_j - w}$ Leads to Casida equations e-h basis

(2) Time propagation Apply E-perturbation $\delta \text{vext}(\mathbf{r},t) = -\kappa z \delta(t) - \cdots > \psi_i(\mathbf{r},t=0^+) = e^{ikz} \psi_i(\mathbf{r})$ Propagate ψ_i get dynamical polarizability $\alpha(\omega) = -k^{-1} \sum_{i=1}^{\infty} \langle \psi_i | z | \psi_i \rangle$

(3) Density Functional Perturbation Theory

Sternheimer equations

$$\left\{H^{(0)} - \epsilon_k \pm \omega + i\eta\right\} \ket{\psi_k^{(1)}(\omega)} = -\left[r + \left(v_{\rm c} + f_{\rm xc}\right)n^{(1)}\right] \ket{\psi_k^{(0)}}$$

Density variation

$$n^{(1)}(r,\omega) = \sum_{k} f_k \left\{ \left(\psi_k^{(0)}(r) \right)^* \psi_k^{(1)}(r,\omega) + \left(\psi_k^{(1)}(r,-\omega) \right)^* \psi_k^{(0)}(r) \right\}$$

$$\chi(\omega) = \chi_0(\omega) + \chi_0(\omega)(\nu + f_{xc}(\omega))\chi(\omega)$$

Optical Spectroscopy

optical gap \neq transport gap \neq photoemision (QP) gap

Applications: (some)!

Charge transfer: phenolates and Photovoltaics Chlorophylls: photosynthesis Optical properties of 1D systems

Charge Transfer excitations

Neepa, Kieron, frequency dependent kernel

Absorption Spectra of p-Nitrophenolate Ions in Vacuo

as donor-acceptor molecules

Steen Bronsted Nielsen et al, ChemPhysChem (2009) Challenges and Perspectives from (TD) Density Functional Theory KITP, Santa Barbara, 2nd November 2009

Absorption Spectra of p-Nitrophenolate Ions in Vacuo

Steen Bronsted Nielsen et al, ChemPhysChem (2009)

Absorption Spectra of p-Nitrophenolate Ions in Solution

Compound	Solution (λ_{max} / nm)				Gas phas	Gas phase (λ_{max} / nm)			
	H ₂ O	MeOH	Toluene	MeCN	Exp	Theory			Store States
			(+18C6)			CC2	TDDFT		
1	402 ^{b)}	387	408	430	392	389	379	A as	S S S S
2	400 ^{c)}	406	472	507	541	570	593	20000	
3		435	504	543	660	608	626		
4		377	445	466	775	752	918	- Chefte	Starter Starter

From blue to red: in vacuo they cover the full visible whereas in solution they absorb in a narrow energy region

The solvent shift is mainly due to counter ion and H-bond interactions, then the results do not correlate with solvent polarity

Challenges and Perspectives from (TD) Density Functional Theory KITP, Santa Barbara, 2nd November 2009

Spectroscopy Fac

Photovoltaics Hybrids

Grätzel cells

CT: Photo-excitation of the lightharvesting carotenoid-porphyrin-C60

N. Spallanzine et al, J. Phys. Chem. B, 2009, 113 (2009)

Photo-excitation of the light-harvesting carotenoid-porphyrin-C60

 $C-P-C_{60} + h\nu \rightarrow C-P^*-C_{60}^*$

$$C - P^* - C_{60}^* \to C - P^+ - C_{60}^{*-} \to C^+ - P - C_{60}^-$$

Carotenoid-porphyrin-C60 photodynamics

time = 0.51 fs Charge on the C60

More biophysical processes

New studies to address the CT and environment in:

Chlorophyll : (photosynthesis) (K. Schulten et al)

role of the porphyrine network:

(Fleming et al)

A) Large scale (massive) MD simulations: (build on CP) Speeding up excite state dynamics (on-going) How to include non-adiabatic couplings?

J.L. Alonso, X. Andrade, P. Echenique, F. Falceto, D. Prada, AR PRL (2008)

Towards the color of plants: e.g. Spinach

Towards the color of plants:

Towards the color of plants:

Challenge: proper treatment of the whole environment, including dissipation for very long simulations from fs to miliseconds and more.....

Problems with extended systems in finite fields?

FIG. 1. ALDA and VK static axial polarizability of polyacetylene compared with restricted Hartree-Fock [18] and MP2 [22] results.

M. van Faassen et al. PRL (2002)

Macroscopic Polarisation Theory and real-time simulation

$$i\hbar \frac{\partial}{\partial t} \psi_{i} = \left[\frac{1}{2m} \left(\vec{p} + \frac{e}{c} \vec{A} \right)^{2} + V_{ion} + V_{H} + V_{xc} \right] \psi_{i} \qquad \vec{E} = \frac{-1}{c} \frac{d\vec{A}(t)}{dt}$$

$$A(t) = A_{ext}(t) + A_{ind}(t) \qquad E_{mac} = 4 \pi P(t)$$

$$H = H + H_{em} \qquad P = \text{polarisation}$$

$$\frac{1}{4\pi} \frac{d^{2}\vec{A}}{dt^{2}} = -e^{2} \frac{n}{m} \vec{A} - c \frac{e}{V} \sum_{i} \langle \psi_{i} | \frac{\vec{p}}{m} | \psi_{i} \rangle = -c^{2} j_{mac}(t) = -c^{2} \frac{d\vec{P}(t)}{dt}$$

What is the link to the "modern theory of polarisation"? (see the recent review by Vanderbilt, Resta)

G.F. Bertsch, J.I. Iwata, AR, K. Yabana, PRB62, 7998 (2000)

Macroscopic Polarisation Theory <-->real-time A(t)

$$\vec{j}_{\text{mac}}(t) = -\frac{e}{c} \frac{1}{\Omega} \sum_{n\vec{k}} \int_{\Omega} d\vec{r} u_{n\vec{k}}^{*}(\vec{r},t) \frac{-i\hbar}{m} \left(\vec{\nabla} + i\vec{k} + \frac{ie}{\hbar c}\vec{A}(t)\right) u_{n\vec{k}}(\vec{r},t)$$
$$i\hbar \frac{\partial}{\partial t} u_{n\vec{k}}(\vec{r},t) = \left\{ -\frac{\hbar^{2}}{2m} \left(\vec{\nabla} + i\vec{k} + \frac{ie}{\hbar c}\vec{A}(t)\right)^{2} + V(\vec{r},t) \right\} u_{n\vec{k}}(\vec{r},t)$$
$$\frac{d\vec{P}(t)}{dt} = \frac{ie}{c} \frac{1}{\Omega} \int_{\Omega} d\vec{r} \sum_{n\vec{k}} \left\{ \frac{\partial u_{n\vec{k}}^{*}}{\partial t} \frac{\partial u_{n\vec{k}}}{\partial \vec{k}} + u_{n\vec{k}}^{*} \frac{\partial^{2} u_{n\vec{k}}}{\partial t \partial \vec{k}} \right\}$$

Berry Phase

$$\vec{P}(t) = \frac{ie}{c} \frac{1}{\Omega} \int_{\Omega} d\vec{r} \sum_{n\vec{k}} u_{n\vec{k}}^*(\vec{r},t) \frac{\partial}{\partial \vec{k}} u_{n\vec{k}}(\vec{r},t)$$

Trans-polyacetylene (Organic Solids)

H, molecular chains (infinite long case)

D. Varsano, A. Marini, AR PRL (2008)

Long-range effects

Exchange dominate Exciton localisation Polarisability saturation

importance of the wfns in the response and kernel

.....also for correlated materials see Lucia's talk

The combination of MBPT and (TD)DFT is a powerful tool to "predictive" describe the combined dynamics of electron/ion in response to external electromagnetic fields of large scale nanostructures, biological molecules and extended systems spanning very different time scales

For more details see: http://nano-bio.ehu.es http://etsf.eu

Challenges and Perspectives from (TD) Density Functional Theory KITP, Santa Barbara, 2nd November 2009

