

Reconstruction of Molecular Orbitals from Angle-Resolved Photoemission

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

Collaborations and Funding

Atomistic Modelling Group – University Leoben, Austria

- Peter Puschnig
- Claudia Ambrosch-Draxl

Experimental Surface Science Group – University Graz, Austria

- Stephen Berkebile
- Alexander Fleming
- Georg Koller
- Mike Ramsey

Lehrstuhl für Technische Physik – University Erlangen-Nürnberg, Germany

- Thomas Seyller
- Konstantin Emtsev

The work is part of the National Research Network "Interface controlled and functionalized organic films"

Der Wissenschaftsfond

Outline

Motivation: Organic Semiconductors

Angle-Resolved Photoemission Spectroscopy ARPES from Molecular Layers

Multilayers and Monolayers of p-Sexiphenyl and Pentacene

Reconstruction of Orbital Densities Conclusion

Organic π-Conjugated Molecules

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

Light Slide 4

Organic π-Conjugated Molecules

OFET Organic Field Effect Transistor

Para-Sexiphenyl (C₃₆H₂₆)

OLED Organic Light Emitting Diode

Angle-Resolved Photoemission

The Photoemission Intensity

One-Step-Model

$$I(\theta,\phi;E_{\rm kin}) \propto \sum_{i} \left| \langle \psi_f^*(\theta,\phi;E_{\rm kin}) | \mathbf{A} \cdot \mathbf{p} | \psi_i \rangle \right|^2 \times \delta \left(E_i + \Phi + E_{\rm kin} - \hbar \omega \right)$$

[Feibelman and Eastman, *Phys. Rev. B* **10**, 4932 (1974)]

The Photoemission Intensity

A simple theory (one-step model + final state = plane wave)

... leads to a simple result $I_i(\theta, \phi) \propto |(\mathbf{A} \cdot \mathbf{k})|^2 \times \left| \tilde{\psi}_i(\mathbf{k}) \right|^2$

Fourier Transform of Initial State Orbital

[Feibelman and Eastman, Phys. Rev. B 10, 4932 (1974), E. Shirley et al., Phys. Rev. B 51, 13614 (1995).]

Limitations of Plane Wave Approach

The Independent Atomic Centre approximation (IAC) [W. D. Grobman, Phys. Rev. B 17, 4573 (1978).]

$$A(\mathbf{R}, E_{\rm kin}) = \sum_{\alpha} \sum_{nlm} C_{\alpha,nlm} e^{i\mathbf{k}\mathbf{R}_{\alpha}} \sum_{LM} M^{LM}_{\alpha,nlm}(E_{\rm kin}) Y_{LM}(\hat{R})$$

can be shown to reduce to the PW final state result, if [Goldberg et al, Solid State Commun. 28, 459-463 (1978), Puschnig et al., supporting online material to Science 326, 702 (2009)]

- All contributing atomic orbitals are of the same type (e.g. π-orbitals)
- The emission direction is close to the polarization vector of the incoming photon
- The molecule consists of only light atoms (C, N, O) with small scattering cross sections

Uniaxially Aligned Sexiphenyl

Comparison with DFT

Comparison with DFT

1D-Fourier Transform

Planar vs. Twisted

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

Planar of Twisted by ~ 30 deg

G. Koller et al., Science 317, 351 (2007).

ARPES of Pentacene

S. Berkebile, P. Puschnig, G. Koller, M. Oehzelt, F. P. Netzer, C. Ambrosch-Draxl, M. G. Ramsey, Phys. Rev. B 77, 115312 (2008) Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009 Slide 16

Toroidal Electron Spectrometer

The Toroidal Electron Spectrometer for Angle-Resolved Photoelectron Spectroscopy with Synchrotron Radiation at BESSY II

Pentacene HOMO

Azimuthal Scans at constant photon energy and constant kinetic energy

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

Pentacene HOMO from DFT

Theory vs. Experiment

Theory vs. Experiment

Theory vs. Experiment

Sexiphenyl Monolayer on Cu(110)

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

Slide 23

e

hγ

(35eV)

Sexiphenyl Monolayer on Cu(110)

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

(right above the Cu d-band and intersecting the Cu-s band)

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

2D Momentum Maps: 6P/Cu(110)

ARPES data for a monolayer of 6P / Cu(110)

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

2D Momentum Maps: 6P/Cu(110)

HOMO

LUMO

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

Reconstruction of Orbitals

Puschnig et al., Science 326, 702 (2009). (published online Sept. 10, 2009)

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

Reconstructed Sexiphenyl Orbitals

Conclusions and Outlook

- Simple theory for PE intensity: works for ...
 - π -orbitals of large molecules
 - Emission direction close to polarization vector
 - Light atoms (C, N, O) with small scattering cross section
- 2D momentum maps provide fingerprints of molecular orbitals
- ARPES data can be used to identify and quantify molecular orientations and conformations
- Molecular orbitals can be reconstructed in cases where unique molecular orientations are present

Thank You!

Functional Organics

Der Wissenschaftsfonds

2007-Winterschool of the NFN "Interface controlled and functionalized organic films"

Stephen

Peter Puschnig, KITP, From Basic Concepts to Real Materials, Nov 2-6, 2009

VERSITÄTS-SPORTINSTITUT GRAZ