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Planet formation

Planetesimal of Safronov 1969:

growth and
planet
formation

Planets form in protoplanetary discs from dust grains that collide
and stick together

Planct @ Dust to planetesimals

formation um — cm: contact forces during collision lead to sticking
Planetesimals cm — km: ???

Streamir .

intsf:bili;f @ Planetesimals to protoplanets

Metallicity km — 1,000 km: gravity

Self-gravity © Protoplanets to planets

Conclusions Gas giants: 10 Mg, core accretes gas (< 10°-107 years)

Terrestrial planets: protoplanets collide (107~10® years)
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Recipe for making planets?

e Hydrogen and Helium (98,5%)
@ Dust and ice (1,5%)

o Coagulation (dust growth)

= Planets? No

“Meter barrier”:
@ Growth to mm or cm, but not larger
@ The problem: small dust grains stick
readily with each other — sand,
pebbles and rocks do not

(Paszun & Dominik)

Projectile 1 Projectile 2

4

(Blum & Wurm 2008)




Overview of planets
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Terrestrial planets

+ More than 400 exoplanets Dwarf planets
+ Countless asteroids and Kuiper belt objects ~
+ Moons of giant planets




Planetesimals

Planetesimal o Kilometer-sized objects massive enough
growth and

planet to attract each other by gravity
formation (two-body encounters)
@ Assembled from colliding dust grains
Planet @ Building blocks of planets

formation

@ Problems:

Planetesimals
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- drift rapidly through the disc William K. Hartmann
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Planetesimal o Kilometer-sized objects massive enough
growth and

planet to attract each other by gravity
fogm?t_'fm (two-body encounters)

e ieriear @ Assembled from colliding dust grains

Planet @ Building blocks of planets

formation

@ Problems:

Planetesimals

Streaming o Pebbles, rocks and boulders:
instability

- drift rapidly through the disc William K. Hartmann

Metallicity . e . .
- have terrible sticking properties

Self-gravity
Conclusions o Protoplanetary discs are turbulent

Planetesimal formation must

© proceed quickly
@ not rely on sticking between large solids

© operate in a turbulent environment




Streaming instability

Planetesimal Youdin & GOOd man 2005: (see also Goodman & Pindor 2000)
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Clumping
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Strong clumping in non-linear state of the streaming instability
(Youdin & Johansen 2007; Johansen & Youdin 2007; also Bai & Stone in preparation)
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Clumping in 3-D

Pllmiesimel 3-D evolution of the streaming instability:
growth and

planet
formation

Particle size:

30cm © 5 AU or 1 cm @ 40 AU

) ulation box
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Conclusions

o Particle clumps have up to 100 times the gas density
@ Clumps dense enough to be gravitationally unstable
@ But still too simplified:

= no vertical gravity and no self-gravity
= single-sized particles
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Sedimentation and clumping
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Sedimentation and clumping

RNl Sedimentation of 10 cm rocks:
growth and 0.040
planet . E
formation
N o Gas mass
nders
Johansen decreases
_— with time
formation
: Solar 0.0308
Planetesimals ..
Streaming metallicity:
instability puﬂ:ed up N 0.02
Metallicity mid-plane
Self-gravity | aye r
Conclusions

Clumping
above
Z ~0.02

-0.05




Why is metallicity important?

Planetesimal
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e Clumping relies on particles being able to accelerate the
gas towards Keplerian speed



Dependence on metallicity

ol o Particles sizes 3-12 cm at 5 AU, 1-4 cm at 10 AU
@ Increase pebble abundance X,/ ¥yas from 0.01 to 0.03
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Planetesimal formation movie
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Planetesimal formation movie

Time is in Keplerian orbits (1 orbit ~ 10 years)

Collapse happens much faster than the radial drift time-scale

Keplerian flow

Johansen, Youdin, & Mac Low (2009)
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The “clumping scenario” for planetesimal formation
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growth and
planet
formation

© Dust growth by coagulation to a few cm

Planet
formation
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instability
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Conclusions

© Gravitational collapse to 100 km radius
planetesimals

(see John Chambers's talk today for alternative turbulent concentration scenario)



From planetesimals to giant planets
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@ Form km-scale
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instability © Run-away accretion of
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Conclusions

(talks by David Stevenson, Jack Lissauer)



Metallicity of host star
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= Expected due to efficiency of core accretion
(Ida & Lin 2004; Mordasini et al. 2009)

= ... but planetesimal formation may play equally big part
(Johansen, Youdin, & Mac Low 2009)
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Metallicity of host star

Z =0.01

0.02 0.03

80 _I T I T T T T [ T T T T J_
n (Gonzalez 1997; Santos et al. 2004;
@ Fischer & Valenti 2005)
=]
g -
EEL
| =
o,
G L .
o
[1H]
=T1)
810 .
=}
[}]
131
o L i
[H]
- § SR
oL '
-0.10 -0.05 0.00 0.05 0.10 —-0.5 O 0 5

X/H,

[Fe/H]

= Expected due to efficiency of core accretion
(Ida & Lin 2004; Mordasini et al. 2009)

= ... but planetesimal formation may play equally big part
(Johansen, Youdin, & Mac Low 2009)
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Several modes of planet formation

Planetesimal
growth and

@ Clumping through streaming instabilities depends only on

B mid-plane dust-to-gas ratio (metallicity), not on absolute
A column density
Johansen .. . .
@ However, metallicity is not a constant of a given
oenet protoplanetary disc
Planetesimals
Streaming
instabilit . . .. - .
et : Protoplanetary discs can obtain critical metallicity by:
etallicity
Self-gravity @ starting out with high metallicity
Conclusions = born riCh
@ photoevaporating the gas
= get rich

© transport solids radially
= restructure debt/mortgage
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Low and high metallicity planet formation
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High metallicity systems Solar (or lower) metallicity systems
@ Planet formation is rapid @ Planet formation triggered by
. photoevaporation
@ Lots of time to accrete gas (Throop & Bally 2005;

Alexander & Armitage 2007)
@ Moderate mass planets

migrate and become hot
Jupiters

@ Little gas when planets form,
so gas giants rare and no
strong migration



Low and high metallicity planet formation

Q. ¢ o o

Planetesimal
growth and . . e ®
planet
formation

High metallicity systems Solar (or lower) metallicity systems
Planet @ Planet formation is rapid © Planet formation triggered by
formation . photoevaporation
Dlanetesimale @ Lots of time to accrete gas (Throop & Bally 2005;
Alexander & Armitage 2007)

Streaming @ Moderate mass planets
instability . 1

migrate and become hot @ Little gas when planets form,
Metallicity . 1

Jupiters so gas glénts rare and no
Self-gravity strong migration

Conclusions

= Predict fewer close in planets in low metallicity systems and
that low mass planets can form around low metallicity stars

= Need better statistics of low metallicity systems and low mass
planets



Low metallicity planets

Planetesimal
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L

ow metallicity planets

Santos et al. (A&A accepted): monitored 100 metal poor stars for

planets.

Number

S T TS S TSNS S ST S
-18 ~14 -12 -1 -08 -08 ~-0.4

= Three planets found

= All three planets orbit the
most metal rich stars of
the sample

= No hot Jupiters
(a=1.76,1.78,5.5 AU)

This is a spectacular confirmation that metallicity matters even
for systems of intrinsically low metallicity



Conclusions

Planetesimal Clumping through streaming instability relevant because:

growth and

formaon © Based on first principles hydrodynamical calculations

@ Allows formation of planetesimals from pebbles and rocks
© Efficiency depends very strongly on metallicity and

S increases sharply above solar metallicity

Planetesimals @ Can be trigged by photoevaporation, opening a new mode

Streaming of planet formation around metal poor stars

instability

Leallichy (Johansen, Youdin, & Mac Low 2009)

Self-gravity

Conclusions




Collision speeds

Planetesimal
growth and
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formation

Relative speeds of particles measured in single grid cells:
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Laundry list

Planetesimal
growth and
planet

formation How do cm-sized pebbles and rocks form out of dust

grains?
(Brauer et al. 2008; Zsom et al. 2010)

Planet

o @ How do pebbles survive radial drift in low metallicity discs?

Planetesimals (Takeuchi & Lin 2002; Brauer et al. 2007)

Streaming @ What is the role of collisional fragmentation and

instability . . . .
N coagulation during gravitational collapse
Metallicity

Self-gravity @ What is the relative role of small scale turbulent
Conclusions concentrations and large scale streaming instabilities?

(Cuzzi et al. 2008; John Chambers’s talk at this meeting)

@ What is the size spectrum of newly formed planetesimals?
Morbidelli et al. 2009: Asteroids were born big

Core accretion and certain debris discs: Planetesimals should be small
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